Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
1950.f2 1950.f \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 299, -42952]$ \(y^2+xy+y=x^3+299x-42952\) 3.8.0-3.a.1.2, 312.16.0.? $[ ]$
1950.t2 1950.t \( 2 \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 12, -339]$ \(y^2+xy+y=x^3+x^2+12x-339\) 3.4.0.a.1, 15.8.0-3.a.1.2, 312.8.0.?, 1560.16.0.? $[ ]$
5850.y2 5850.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 108, 9256]$ \(y^2+xy=x^3-x^2+108x+9256\) 3.4.0.a.1, 15.8.0-3.a.1.1, 312.8.0.?, 1560.16.0.? $[ ]$
5850.be2 5850.be \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.112926632$ $[1, -1, 1, 2695, 1159697]$ \(y^2+xy+y=x^3-x^2+2695x+1159697\) 3.8.0-3.a.1.1, 312.16.0.? $[(-75, 766)]$
15600.bj2 15600.bj \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 4792, 2748912]$ \(y^2=x^3-x^2+4792x+2748912\) 3.4.0.a.1, 12.8.0-3.a.1.1, 312.16.0.? $[ ]$
15600.br2 15600.br \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.178073772$ $[0, 1, 0, 192, 22068]$ \(y^2=x^3+x^2+192x+22068\) 3.4.0.a.1, 60.8.0-3.a.1.2, 312.8.0.?, 1560.16.0.? $[(-6, 144)]$
25350.e2 25350.e \( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.209525746$ $[1, 1, 0, 2025, -754515]$ \(y^2+xy=x^3+x^2+2025x-754515\) 3.4.0.a.1, 120.8.0.?, 195.8.0.?, 312.8.0.?, 1560.16.0.? $[(161, 1863)]$
25350.dn2 25350.dn \( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 50612, -94415608]$ \(y^2+xy=x^3+50612x-94415608\) 3.4.0.a.1, 24.8.0-3.a.1.5, 39.8.0-3.a.1.1, 312.16.0.? $[ ]$
46800.l2 46800.l \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.001077558$ $[0, 0, 0, 1725, -594110]$ \(y^2=x^3+1725x-594110\) 3.4.0.a.1, 60.8.0-3.a.1.1, 312.8.0.?, 1560.16.0.? $[(206, 2916)]$
46800.fj2 46800.fj \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $7.381798666$ $[0, 0, 0, 43125, -74263750]$ \(y^2=x^3+43125x-74263750\) 3.4.0.a.1, 12.8.0-3.a.1.2, 312.16.0.? $[(8221/3, 728144/3)]$
62400.j2 62400.j \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 19167, -22010463]$ \(y^2=x^3-x^2+19167x-22010463\) 3.4.0.a.1, 24.8.0-3.a.1.2, 78.8.0.?, 312.16.0.? $[ ]$
62400.o2 62400.o \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.927318139$ $[0, -1, 0, 767, 175777]$ \(y^2=x^3-x^2+767x+175777\) 3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? $[(21, 448)]$
62400.hu2 62400.hu \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 19167, 22010463]$ \(y^2=x^3+x^2+19167x+22010463\) 3.4.0.a.1, 24.8.0-3.a.1.4, 156.8.0.?, 312.16.0.? $[ ]$
62400.hx2 62400.hx \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.774044439$ $[0, 1, 0, 767, -175777]$ \(y^2=x^3+x^2+767x-175777\) 3.4.0.a.1, 120.8.0.?, 312.8.0.?, 390.8.0.?, 1560.16.0.? $[(299, 5184)]$
76050.cu2 76050.cu \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.173065745$ $[1, -1, 0, 455508, 2549221416]$ \(y^2+xy=x^3-x^2+455508x+2549221416\) 3.4.0.a.1, 24.8.0-3.a.1.6, 39.8.0-3.a.1.2, 312.16.0.? $[(-6171/4, 3092367/4)]$
76050.dn2 76050.dn \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.310034846$ $[1, -1, 1, 18220, 20390127]$ \(y^2+xy+y=x^3-x^2+18220x+20390127\) 3.4.0.a.1, 120.8.0.?, 195.8.0.?, 312.8.0.?, 1560.16.0.? $[(23, 4551)]$
95550.bs2 95550.bs \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $6.590837186$ $[1, 1, 0, 14675, 14747125]$ \(y^2+xy=x^3+x^2+14675x+14747125\) 3.4.0.a.1, 21.8.0-3.a.1.1, 312.8.0.?, 2184.16.0.? $[(4941, 345013)]$
95550.kd2 95550.kd \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.426629904$ $[1, 0, 0, 587, 117977]$ \(y^2+xy=x^3+587x+117977\) 3.4.0.a.1, 105.8.0.?, 312.8.0.?, 10920.16.0.? $[(116, 1265)]$
187200.y2 187200.y \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.386445861$ $[0, 0, 0, 172500, 594110000]$ \(y^2=x^3+172500x+594110000\) 3.4.0.a.1, 24.8.0-3.a.1.1, 78.8.0.?, 312.16.0.? $[(-650, 14400)]$
187200.bc2 187200.bc \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 6900, -4752880]$ \(y^2=x^3+6900x-4752880\) 3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? $[ ]$
187200.pj2 187200.pj \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 172500, -594110000]$ \(y^2=x^3+172500x-594110000\) 3.4.0.a.1, 24.8.0-3.a.1.3, 156.8.0.?, 312.16.0.? $[ ]$
187200.pl2 187200.pl \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.604477545$ $[0, 0, 0, 6900, 4752880]$ \(y^2=x^3+6900x+4752880\) 3.4.0.a.1, 120.8.0.?, 312.8.0.?, 390.8.0.?, 1560.16.0.? $[(2504, 125388)]$
202800.k2 202800.k \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.719855037$ $[0, -1, 0, 809792, 6042598912]$ \(y^2=x^3-x^2+809792x+6042598912\) 3.4.0.a.1, 24.8.0-3.a.1.7, 156.8.0.?, 312.16.0.? $[(-15856/5, 9077328/5)]$
202800.kb2 202800.kb \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.792722279$ $[0, 1, 0, 32392, 48353748]$ \(y^2=x^3+x^2+32392x+48353748\) 3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? $[(-308, 3042)]$
235950.f2 235950.f \( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.457056144$ $[1, 1, 0, 1450, 458220]$ \(y^2+xy=x^3+x^2+1450x+458220\) 3.4.0.a.1, 165.8.0.?, 312.8.0.?, 17160.16.0.? $[(-71, 96)]$
235950.iv2 235950.iv \( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.536518745$ $[1, 0, 0, 36237, 57205017]$ \(y^2+xy=x^3+36237x+57205017\) 3.4.0.a.1, 33.8.0-3.a.1.2, 312.8.0.?, 3432.16.0.? $[(252, 8949)]$
286650.ei2 286650.ei \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 5283, -3185379]$ \(y^2+xy=x^3-x^2+5283x-3185379\) 3.4.0.a.1, 105.8.0.?, 312.8.0.?, 10920.16.0.? $[ ]$
286650.mk2 286650.mk \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.604021756$ $[1, -1, 1, 132070, -398040303]$ \(y^2+xy+y=x^3-x^2+132070x-398040303\) 3.4.0.a.1, 21.8.0-3.a.1.2, 312.8.0.?, 2184.16.0.? $[(10019, 998265)]$
  displayed columns for results