Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1950.f2 |
1950m1 |
1950.f |
1950m |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{9} \cdot 5^{8} \cdot 13 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$3240$ |
$0.963123$ |
$7604375/2047032$ |
$1.24246$ |
$4.60162$ |
$[1, 0, 1, 299, -42952]$ |
\(y^2+xy+y=x^3+299x-42952\) |
3.8.0-3.a.1.2, 312.16.0.? |
$[ ]$ |
1950.t2 |
1950o1 |
1950.t |
1950o |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{9} \cdot 5^{2} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$648$ |
$0.158404$ |
$7604375/2047032$ |
$1.24246$ |
$3.32692$ |
$[1, 1, 1, 12, -339]$ |
\(y^2+xy+y=x^3+x^2+12x-339\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 312.8.0.?, 1560.16.0.? |
$[ ]$ |
5850.y2 |
5850k1 |
5850.y |
5850k |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{15} \cdot 5^{2} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5184$ |
$0.707710$ |
$7604375/2047032$ |
$1.24246$ |
$3.66547$ |
$[1, -1, 0, 108, 9256]$ |
\(y^2+xy=x^3-x^2+108x+9256\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 312.8.0.?, 1560.16.0.? |
$[ ]$ |
5850.be2 |
5850cc1 |
5850.be |
5850cc |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{15} \cdot 5^{8} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$312$ |
$16$ |
$0$ |
$1.112926632$ |
$1$ |
|
$4$ |
$25920$ |
$1.512430$ |
$7604375/2047032$ |
$1.24246$ |
$4.77873$ |
$[1, -1, 1, 2695, 1159697]$ |
\(y^2+xy+y=x^3-x^2+2695x+1159697\) |
3.8.0-3.a.1.1, 312.16.0.? |
$[(-75, 766)]$ |
15600.bj2 |
15600bx1 |
15600.bj |
15600bx |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{15} \cdot 3^{9} \cdot 5^{8} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$77760$ |
$1.656271$ |
$7604375/2047032$ |
$1.24246$ |
$4.47205$ |
$[0, -1, 0, 4792, 2748912]$ |
\(y^2=x^3-x^2+4792x+2748912\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 312.16.0.? |
$[ ]$ |
15600.br2 |
15600cg1 |
15600.br |
15600cg |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{15} \cdot 3^{9} \cdot 5^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$0.178073772$ |
$1$ |
|
$8$ |
$15552$ |
$0.851552$ |
$7604375/2047032$ |
$1.24246$ |
$3.47188$ |
$[0, 1, 0, 192, 22068]$ |
\(y^2=x^3+x^2+192x+22068\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 312.8.0.?, 1560.16.0.? |
$[(-6, 144)]$ |
25350.e2 |
25350h1 |
25350.e |
25350h |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 3^{9} \cdot 5^{2} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$2.209525746$ |
$1$ |
|
$2$ |
$108864$ |
$1.440880$ |
$7604375/2047032$ |
$1.24246$ |
$4.00305$ |
$[1, 1, 0, 2025, -754515]$ |
\(y^2+xy=x^3+x^2+2025x-754515\) |
3.4.0.a.1, 120.8.0.?, 195.8.0.?, 312.8.0.?, 1560.16.0.? |
$[(161, 1863)]$ |
25350.dn2 |
25350dl1 |
25350.dn |
25350dl |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 3^{9} \cdot 5^{8} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$544320$ |
$2.245598$ |
$7604375/2047032$ |
$1.24246$ |
$4.95533$ |
$[1, 0, 0, 50612, -94415608]$ |
\(y^2+xy=x^3+50612x-94415608\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 39.8.0-3.a.1.1, 312.16.0.? |
$[ ]$ |
46800.l2 |
46800dl1 |
46800.l |
46800dl |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{15} \cdot 3^{15} \cdot 5^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$2.001077558$ |
$1$ |
|
$2$ |
$124416$ |
$1.400858$ |
$7604375/2047032$ |
$1.24246$ |
$3.73016$ |
$[0, 0, 0, 1725, -594110]$ |
\(y^2=x^3+1725x-594110\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 312.8.0.?, 1560.16.0.? |
$[(206, 2916)]$ |
46800.fj2 |
46800fn1 |
46800.fj |
46800fn |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{15} \cdot 3^{15} \cdot 5^{8} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$7.381798666$ |
$1$ |
|
$0$ |
$622080$ |
$2.205578$ |
$7604375/2047032$ |
$1.24246$ |
$4.62815$ |
$[0, 0, 0, 43125, -74263750]$ |
\(y^2=x^3+43125x-74263750\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 312.16.0.? |
$[(8221/3, 728144/3)]$ |
62400.j2 |
62400bm1 |
62400.j |
62400bm |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{9} \cdot 5^{8} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$622080$ |
$2.002846$ |
$7604375/2047032$ |
$1.24246$ |
$4.28722$ |
$[0, -1, 0, 19167, -22010463]$ |
\(y^2=x^3-x^2+19167x-22010463\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 78.8.0.?, 312.16.0.? |
$[ ]$ |
62400.o2 |
62400fe1 |
62400.o |
62400fe |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{9} \cdot 5^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1.927318139$ |
$1$ |
|
$2$ |
$124416$ |
$1.198126$ |
$7604375/2047032$ |
$1.24246$ |
$3.41263$ |
$[0, -1, 0, 767, 175777]$ |
\(y^2=x^3-x^2+767x+175777\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[(21, 448)]$ |
62400.hu2 |
62400hu1 |
62400.hu |
62400hu |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{9} \cdot 5^{8} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$622080$ |
$2.002846$ |
$7604375/2047032$ |
$1.24246$ |
$4.28722$ |
$[0, 1, 0, 19167, 22010463]$ |
\(y^2=x^3+x^2+19167x+22010463\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 156.8.0.?, 312.16.0.? |
$[ ]$ |
62400.hx2 |
62400dc1 |
62400.hx |
62400dc |
$2$ |
$3$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{9} \cdot 5^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$0.774044439$ |
$1$ |
|
$4$ |
$124416$ |
$1.198126$ |
$7604375/2047032$ |
$1.24246$ |
$3.41263$ |
$[0, 1, 0, 767, -175777]$ |
\(y^2=x^3+x^2+767x-175777\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 390.8.0.?, 1560.16.0.? |
$[(299, 5184)]$ |
76050.cu2 |
76050ct1 |
76050.cu |
76050ct |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 3^{15} \cdot 5^{8} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$2.173065745$ |
$1$ |
|
$0$ |
$4354560$ |
$2.794903$ |
$7604375/2047032$ |
$1.24246$ |
$5.05744$ |
$[1, -1, 0, 455508, 2549221416]$ |
\(y^2+xy=x^3-x^2+455508x+2549221416\) |
3.4.0.a.1, 24.8.0-3.a.1.6, 39.8.0-3.a.1.2, 312.16.0.? |
$[(-6171/4, 3092367/4)]$ |
76050.dn2 |
76050fa1 |
76050.dn |
76050fa |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 3^{15} \cdot 5^{2} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1.310034846$ |
$1$ |
|
$2$ |
$870912$ |
$1.990185$ |
$7604375/2047032$ |
$1.24246$ |
$4.19825$ |
$[1, -1, 1, 18220, 20390127]$ |
\(y^2+xy+y=x^3-x^2+18220x+20390127\) |
3.4.0.a.1, 120.8.0.?, 195.8.0.?, 312.8.0.?, 1560.16.0.? |
$[(23, 4551)]$ |
95550.bs2 |
95550cg1 |
95550.bs |
95550cg |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{9} \cdot 5^{8} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$6.590837186$ |
$1$ |
|
$2$ |
$933120$ |
$1.936079$ |
$7604375/2047032$ |
$1.24246$ |
$4.05806$ |
$[1, 1, 0, 14675, 14747125]$ |
\(y^2+xy=x^3+x^2+14675x+14747125\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 312.8.0.?, 2184.16.0.? |
$[(4941, 345013)]$ |
95550.kd2 |
95550jp1 |
95550.kd |
95550jp |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{9} \cdot 5^{2} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$0.426629904$ |
$1$ |
|
$4$ |
$186624$ |
$1.131359$ |
$7604375/2047032$ |
$1.24246$ |
$3.21597$ |
$[1, 0, 0, 587, 117977]$ |
\(y^2+xy=x^3+587x+117977\) |
3.4.0.a.1, 105.8.0.?, 312.8.0.?, 10920.16.0.? |
$[(116, 1265)]$ |
187200.y2 |
187200io1 |
187200.y |
187200io |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{15} \cdot 5^{8} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1.386445861$ |
$1$ |
|
$4$ |
$4976640$ |
$2.552151$ |
$7604375/2047032$ |
$1.24246$ |
$4.44222$ |
$[0, 0, 0, 172500, 594110000]$ |
\(y^2=x^3+172500x+594110000\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 78.8.0.?, 312.16.0.? |
$[(-650, 14400)]$ |
187200.bc2 |
187200co1 |
187200.bc |
187200co |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{15} \cdot 5^{2} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$995328$ |
$1.747431$ |
$7604375/2047032$ |
$1.24246$ |
$3.64678$ |
$[0, 0, 0, 6900, -4752880]$ |
\(y^2=x^3+6900x-4752880\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[ ]$ |
187200.pj2 |
187200ca1 |
187200.pj |
187200ca |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{15} \cdot 5^{8} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$2.552151$ |
$7604375/2047032$ |
$1.24246$ |
$4.44222$ |
$[0, 0, 0, 172500, -594110000]$ |
\(y^2=x^3+172500x-594110000\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 156.8.0.?, 312.16.0.? |
$[ ]$ |
187200.pl2 |
187200of1 |
187200.pl |
187200of |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 3^{15} \cdot 5^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$3.604477545$ |
$1$ |
|
$2$ |
$995328$ |
$1.747431$ |
$7604375/2047032$ |
$1.24246$ |
$3.64678$ |
$[0, 0, 0, 6900, 4752880]$ |
\(y^2=x^3+6900x+4752880\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 390.8.0.?, 1560.16.0.? |
$[(2504, 125388)]$ |
202800.k2 |
202800df1 |
202800.k |
202800df |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{15} \cdot 3^{9} \cdot 5^{8} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$6.719855037$ |
$1$ |
|
$0$ |
$13063680$ |
$2.938744$ |
$7604375/2047032$ |
$1.24246$ |
$4.79276$ |
$[0, -1, 0, 809792, 6042598912]$ |
\(y^2=x^3-x^2+809792x+6042598912\) |
3.4.0.a.1, 24.8.0-3.a.1.7, 156.8.0.?, 312.16.0.? |
$[(-15856/5, 9077328/5)]$ |
202800.kb2 |
202800cx1 |
202800.kb |
202800cx |
$2$ |
$3$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{15} \cdot 3^{9} \cdot 5^{2} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$0.792722279$ |
$1$ |
|
$4$ |
$2612736$ |
$2.134026$ |
$7604375/2047032$ |
$1.24246$ |
$4.00253$ |
$[0, 1, 0, 32392, 48353748]$ |
\(y^2=x^3+x^2+32392x+48353748\) |
3.4.0.a.1, 120.8.0.?, 312.8.0.?, 780.8.0.?, 1560.16.0.? |
$[(-308, 3042)]$ |
235950.f2 |
235950f1 |
235950.f |
235950f |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{9} \cdot 5^{2} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$17160$ |
$16$ |
$0$ |
$2.457056144$ |
$1$ |
|
$4$ |
$933120$ |
$1.357351$ |
$7604375/2047032$ |
$1.24246$ |
$3.20019$ |
$[1, 1, 0, 1450, 458220]$ |
\(y^2+xy=x^3+x^2+1450x+458220\) |
3.4.0.a.1, 165.8.0.?, 312.8.0.?, 17160.16.0.? |
$[(-71, 96)]$ |
235950.iv2 |
235950iv1 |
235950.iv |
235950iv |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{9} \cdot 5^{8} \cdot 11^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3432$ |
$16$ |
$0$ |
$0.536518745$ |
$1$ |
|
$4$ |
$4665600$ |
$2.162071$ |
$7604375/2047032$ |
$1.24246$ |
$3.98075$ |
$[1, 0, 0, 36237, 57205017]$ |
\(y^2+xy=x^3+36237x+57205017\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 312.8.0.?, 3432.16.0.? |
$[(252, 8949)]$ |
286650.ei2 |
286650ei1 |
286650.ei |
286650ei |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{15} \cdot 5^{2} \cdot 7^{6} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$10920$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1492992$ |
$1.680666$ |
$7604375/2047032$ |
$1.24246$ |
$3.45937$ |
$[1, -1, 0, 5283, -3185379]$ |
\(y^2+xy=x^3-x^2+5283x-3185379\) |
3.4.0.a.1, 105.8.0.?, 312.8.0.?, 10920.16.0.? |
$[ ]$ |
286650.mk2 |
286650mk1 |
286650.mk |
286650mk |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{3} \cdot 3^{15} \cdot 5^{8} \cdot 7^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2184$ |
$16$ |
$0$ |
$3.604021756$ |
$1$ |
|
$2$ |
$7464960$ |
$2.485386$ |
$7604375/2047032$ |
$1.24246$ |
$4.22784$ |
$[1, -1, 1, 132070, -398040303]$ |
\(y^2+xy+y=x^3-x^2+132070x-398040303\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 312.8.0.?, 2184.16.0.? |
$[(10019, 998265)]$ |