Show commands for:
SageMath
sage: E = EllipticCurve("fe1")
sage: E.isogeny_class()
Elliptic curves in class 62400fe
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
62400.o2 | 62400fe1 | [0, -1, 0, 767, 175777] | [] | 124416 | \(\Gamma_0(N)\)-optimal |
62400.o1 | 62400fe2 | [0, -1, 0, -215233, 38511457] | [] | 373248 |
Rank
sage: E.rank()
The elliptic curves in class 62400fe have rank \(1\).
Complex multiplication
The elliptic curves in class 62400fe do not have complex multiplication.Modular form 62400.2.a.fe
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.