Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
46410.ck6 |
46410cn2 |
46410.ck |
46410cn |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{8} \cdot 7^{2} \cdot 13^{4} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/8\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.96.0.40 |
2Cs |
$371280$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$14$ |
$3145728$ |
$2.779636$ |
$72727020009972527154752161/265361167808100000000$ |
$0.98646$ |
$5.54186$ |
$[1, 0, 0, -8696090, 9838496100]$ |
\(y^2+xy=x^3-8696090x+9838496100\) |
2.6.0.a.1, 4.24.0-4.b.1.3, 8.96.0-8.l.2.2, 240.192.1.?, 476.48.0.?, $\ldots$ |
$[]$ |
139230.j6 |
139230dy2 |
139230.j |
139230dy |
$8$ |
$16$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{14} \cdot 5^{8} \cdot 7^{2} \cdot 13^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.98 |
2Cs |
$371280$ |
$768$ |
$13$ |
$5.891810039$ |
$1$ |
|
$2$ |
$25165824$ |
$3.328945$ |
$72727020009972527154752161/265361167808100000000$ |
$0.98646$ |
$5.58435$ |
$[1, -1, 0, -78264810, -265639394700]$ |
\(y^2+xy=x^3-x^2-78264810x-265639394700\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.l.2, 12.24.0-4.b.1.3, 24.96.0-8.l.2.3, $\ldots$ |
$[(201940/3, 81922090/3)]$ |
232050.bf6 |
232050bf2 |
232050.bf |
232050bf |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{14} \cdot 7^{2} \cdot 13^{4} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.98 |
2Cs |
$371280$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$2$ |
$75497472$ |
$3.584358$ |
$72727020009972527154752161/265361167808100000000$ |
$0.98646$ |
$5.60154$ |
$[1, 1, 0, -217402250, 1229812012500]$ |
\(y^2+xy=x^3+x^2-217402250x+1229812012500\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.l.2, 20.24.0-4.b.1.3, 40.96.0-8.l.2.2, $\ldots$ |
$[]$ |
324870.dd6 |
324870dd2 |
324870.dd |
324870dd |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{8} \cdot 7^{8} \cdot 13^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.98 |
2Cs |
$371280$ |
$768$ |
$13$ |
$7.010727584$ |
$1$ |
|
$4$ |
$150994944$ |
$3.752594$ |
$72727020009972527154752161/265361167808100000000$ |
$0.98646$ |
$5.61210$ |
$[1, 1, 1, -426108411, -3375030270711]$ |
\(y^2+xy+y=x^3+x^2-426108411x-3375030270711\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0.l.2, 28.24.0-4.b.1.3, 56.96.0-8.l.2.3, $\ldots$ |
$[(648789, 521991230)]$ |
371280.cy6 |
371280cy2 |
371280.cy |
371280cy |
$8$ |
$16$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{20} \cdot 3^{8} \cdot 5^{8} \cdot 7^{2} \cdot 13^{4} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.96.0.57 |
2Cs |
$371280$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$3$ |
$75497472$ |
$3.472786$ |
$72727020009972527154752161/265361167808100000000$ |
$0.98646$ |
$5.29186$ |
$[0, -1, 0, -139137440, -629663750400]$ |
\(y^2=x^3-x^2-139137440x-629663750400\) |
2.6.0.a.1, 4.24.0-4.b.1.1, 8.96.0-8.l.2.4, 240.192.1.?, 476.48.0.?, $\ldots$ |
$[]$ |