Properties

Label 232050bf
Number of curves $8$
Conductor $232050$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bf1")
 
E.isogeny_class()
 

Elliptic curves in class 232050bf

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
232050.bf7 232050bf1 \([1, 1, 0, -7450250, 36654796500]\) \(-2926956820564562516641/35459588343029760000\) \(-554056067859840000000000\) \([2]\) \(37748736\) \(3.2378\) \(\Gamma_0(N)\)-optimal
232050.bf6 232050bf2 \([1, 1, 0, -217402250, 1229812012500]\) \(72727020009972527154752161/265361167808100000000\) \(4146268247001562500000000\) \([2, 2]\) \(75497472\) \(3.5844\)  
232050.bf3 232050bf3 \([1, 1, 0, -3475384250, 78857749126500]\) \(297106512928238351998640242081/3977028808593750000\) \(62141075134277343750000\) \([2]\) \(150994944\) \(3.9309\)  
232050.bf5 232050bf4 \([1, 1, 0, -318652250, -31864237500]\) \(229010110533436633465952161/132501160769452503210000\) \(2070330637022695362656250000\) \([2, 2]\) \(150994944\) \(3.9309\)  
232050.bf8 232050bf5 \([1, 1, 0, 1274460250, -253306875000]\) \(14651516183052242700771495839/8480668142378708755560900\) \(-132510439724667324305639062500\) \([2]\) \(301989888\) \(4.2775\)  
232050.bf2 232050bf6 \([1, 1, 0, -3531764750, -80555676600000]\) \(311802066473807207098058600161/1033693082103011001480900\) \(16151454407859546898139062500\) \([2, 2]\) \(301989888\) \(4.2775\)  
232050.bf4 232050bf7 \([1, 1, 0, -2010131000, -150427576766250]\) \(-57487943130312093140621093761/592356094985924086700006670\) \(-9255563984155063854687604218750\) \([2]\) \(603979776\) \(4.6241\)  
232050.bf1 232050bf8 \([1, 1, 0, -56463198500, -5164143505383750]\) \(1274090022584975661628188489514561/14072533302105480763470\) \(219883332845398136929218750\) \([2]\) \(603979776\) \(4.6241\)  

Rank

sage: E.rank()
 

The elliptic curves in class 232050bf have rank \(0\).

Complex multiplication

The elliptic curves in class 232050bf do not have complex multiplication.

Modular form 232050.2.a.bf

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + q^{7} - q^{8} + q^{9} - 4 q^{11} - q^{12} - q^{13} - q^{14} + q^{16} - q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 8 & 8 \\ 8 & 4 & 8 & 2 & 4 & 1 & 2 & 2 \\ 16 & 8 & 16 & 4 & 8 & 2 & 1 & 4 \\ 16 & 8 & 16 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.