Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
175.a2 |
175a1 |
175.a |
175a |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \) |
\( - 5^{3} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.3 |
5B.1.2 |
$70$ |
$48$ |
$1$ |
$0.132925999$ |
$1$ |
|
$10$ |
$8$ |
$-0.750526$ |
$4096/7$ |
$0.98030$ |
$2.67494$ |
$[0, -1, 1, 2, -2]$ |
\(y^2+y=x^3-x^2+2x-2\) |
5.24.0-5.a.2.2, 70.48.1-70.d.2.4 |
$[(2, 2)]$ |
175.c2 |
175c1 |
175.c |
175c |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \) |
\( - 5^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$70$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$40$ |
$0.054193$ |
$4096/7$ |
$0.98030$ |
$4.54465$ |
$[0, 1, 1, 42, -131]$ |
\(y^2+y=x^3+x^2+42x-131\) |
5.24.0-5.a.2.1, 70.48.1-70.d.2.3 |
$[]$ |
1225.a2 |
1225j1 |
1225.a |
1225j |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \) |
\( - 5^{3} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$70$ |
$48$ |
$1$ |
$0.155392136$ |
$1$ |
|
$6$ |
$384$ |
$0.222429$ |
$4096/7$ |
$0.98030$ |
$3.58488$ |
$[0, 1, 1, 82, 424]$ |
\(y^2+y=x^3+x^2+82x+424\) |
5.12.0.a.2, 10.24.0-5.a.2.1, 35.24.0-5.a.2.2, 70.48.1-70.d.2.2 |
$[(23, 122)]$ |
1225.i2 |
1225i1 |
1225.i |
1225i |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \) |
\( - 5^{9} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$70$ |
$48$ |
$1$ |
$1.712806605$ |
$1$ |
|
$0$ |
$1920$ |
$1.027147$ |
$4096/7$ |
$0.98030$ |
$4.94292$ |
$[0, -1, 1, 2042, 48943]$ |
\(y^2+y=x^3-x^2+2042x+48943\) |
5.12.0.a.2, 10.24.0-5.a.2.2, 35.24.0-5.a.2.1, 70.48.1-70.d.2.1 |
$[(293/2, 6121/2)]$ |
1575.a2 |
1575i1 |
1575.a |
1575i |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$210$ |
$48$ |
$1$ |
$0.849174825$ |
$1$ |
|
$4$ |
$1200$ |
$0.603499$ |
$4096/7$ |
$0.98030$ |
$4.08364$ |
$[0, 0, 1, 375, 3906]$ |
\(y^2+y=x^3+375x+3906\) |
5.12.0.a.2, 15.24.0-5.a.2.2, 70.24.1.d.2, 210.48.1.? |
$[(0, 62)]$ |
1575.k2 |
1575k1 |
1575.k |
1575k |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$240$ |
$-0.201220$ |
$4096/7$ |
$0.98030$ |
$2.77196$ |
$[0, 0, 1, 15, 31]$ |
\(y^2+y=x^3+15x+31\) |
5.12.0.a.2, 15.24.0-5.a.2.1, 70.24.1.d.2, 210.48.1.? |
$[]$ |
2800.l2 |
2800be1 |
2800.l |
2800be |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1600$ |
$0.747340$ |
$4096/7$ |
$0.98030$ |
$4.00509$ |
$[0, -1, 0, 667, 9037]$ |
\(y^2=x^3-x^2+667x+9037\) |
5.12.0.a.2, 20.24.0-5.a.2.1, 70.24.1.d.2, 140.48.1.? |
$[]$ |
2800.w2 |
2800y1 |
2800.w |
2800y |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{3} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$140$ |
$48$ |
$1$ |
$1.084555083$ |
$1$ |
|
$2$ |
$320$ |
$-0.057379$ |
$4096/7$ |
$0.98030$ |
$2.78849$ |
$[0, 1, 0, 27, 83]$ |
\(y^2=x^3+x^2+27x+83\) |
5.12.0.a.2, 20.24.0-5.a.2.2, 70.24.1.d.2, 140.48.1.? |
$[(-2, 5)]$ |
11025.d2 |
11025bq1 |
11025.d |
11025bq |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{6} \cdot 5^{9} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$57600$ |
$1.576454$ |
$4096/7$ |
$0.98030$ |
$4.48427$ |
$[0, 0, 1, 18375, -1339844]$ |
\(y^2+y=x^3+18375x-1339844\) |
5.12.0.a.2, 30.24.0-5.a.2.1, 70.24.1.d.2, 105.24.0.?, 210.48.1.? |
$[]$ |
11025.bq2 |
11025bo1 |
11025.bq |
11025bo |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{6} \cdot 5^{3} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.771735$ |
$4096/7$ |
$0.98030$ |
$3.44681$ |
$[0, 0, 1, 735, -10719]$ |
\(y^2+y=x^3+735x-10719\) |
5.12.0.a.2, 30.24.0-5.a.2.2, 70.24.1.d.2, 105.24.0.?, 210.48.1.? |
$[]$ |
11200.t2 |
11200cy1 |
11200.t |
11200cy |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 5^{3} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$280$ |
$48$ |
$1$ |
$0.643212777$ |
$1$ |
|
$2$ |
$640$ |
$-0.403953$ |
$4096/7$ |
$0.98030$ |
$1.92782$ |
$[0, -1, 0, 7, 7]$ |
\(y^2=x^3-x^2+7x+7\) |
5.12.0.a.2, 40.24.0-5.a.2.1, 70.24.1.d.2, 280.48.1.? |
$[(2, 5)]$ |
11200.ba2 |
11200bf1 |
11200.ba |
11200bf |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 5^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$280$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$3200$ |
$0.400766$ |
$4096/7$ |
$0.98030$ |
$2.96354$ |
$[0, -1, 0, 167, -1213]$ |
\(y^2=x^3-x^2+167x-1213\) |
5.12.0.a.2, 40.24.0-5.a.2.4, 70.24.1.d.2, 280.48.1.? |
$[]$ |
11200.ci2 |
11200df1 |
11200.ci |
11200df |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 5^{9} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$280$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$3200$ |
$0.400766$ |
$4096/7$ |
$0.98030$ |
$2.96354$ |
$[0, 1, 0, 167, 1213]$ |
\(y^2=x^3+x^2+167x+1213\) |
5.12.0.a.2, 40.24.0-5.a.2.2, 70.24.1.d.2, 280.48.1.? |
$[]$ |
11200.cs2 |
11200bo1 |
11200.cs |
11200bo |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 5^{3} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$280$ |
$48$ |
$1$ |
$1.484766292$ |
$1$ |
|
$2$ |
$640$ |
$-0.403953$ |
$4096/7$ |
$0.98030$ |
$1.92782$ |
$[0, 1, 0, 7, -7]$ |
\(y^2=x^3+x^2+7x-7\) |
5.12.0.a.2, 40.24.0-5.a.2.3, 70.24.1.d.2, 280.48.1.? |
$[(8, 25)]$ |
19600.bp2 |
19600dw1 |
19600.bp |
19600dw |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 5^{3} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$15360$ |
$0.915576$ |
$4096/7$ |
$0.98030$ |
$3.42080$ |
$[0, -1, 0, 1307, -25843]$ |
\(y^2=x^3-x^2+1307x-25843\) |
5.12.0.a.2, 20.24.0-5.a.2.3, 70.24.1.d.2, 140.48.1.? |
$[]$ |
19600.cy2 |
19600ds1 |
19600.cy |
19600ds |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 5^{9} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$76800$ |
$1.720295$ |
$4096/7$ |
$0.98030$ |
$4.39787$ |
$[0, 1, 0, 32667, -3165037]$ |
\(y^2=x^3+x^2+32667x-3165037\) |
5.12.0.a.2, 20.24.0-5.a.2.4, 70.24.1.d.2, 140.48.1.? |
$[]$ |
21175.d2 |
21175bn1 |
21175.d |
21175bn |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 11^{2} \) |
\( - 5^{9} \cdot 7 \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$770$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$54000$ |
$1.253139$ |
$4096/7$ |
$0.98030$ |
$3.80094$ |
$[0, 1, 1, 5042, 194244]$ |
\(y^2+y=x^3+x^2+5042x+194244\) |
5.12.0.a.2, 55.24.0-5.a.2.2, 70.24.1.d.2, 770.48.1.? |
$[]$ |
21175.bk2 |
21175be1 |
21175.bk |
21175be |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 11^{2} \) |
\( - 5^{3} \cdot 7 \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$770$ |
$48$ |
$1$ |
$3.837613806$ |
$1$ |
|
$0$ |
$10800$ |
$0.448421$ |
$4096/7$ |
$0.98030$ |
$2.83145$ |
$[0, -1, 1, 202, 1473]$ |
\(y^2+y=x^3-x^2+202x+1473\) |
5.12.0.a.2, 55.24.0-5.a.2.1, 70.24.1.d.2, 770.48.1.? |
$[(53/2, 631/2)]$ |
25200.v2 |
25200fd1 |
25200.v |
25200fd |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$420$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$9600$ |
$0.491927$ |
$4096/7$ |
$0.98030$ |
$2.83434$ |
$[0, 0, 0, 240, -2000]$ |
\(y^2=x^3+240x-2000\) |
5.12.0.a.2, 60.24.0-5.a.2.2, 70.24.1.d.2, 420.48.1.? |
$[]$ |
25200.dp2 |
25200fr1 |
25200.dp |
25200fr |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$420$ |
$48$ |
$1$ |
$7.734536141$ |
$1$ |
|
$0$ |
$48000$ |
$1.296646$ |
$4096/7$ |
$0.98030$ |
$3.78718$ |
$[0, 0, 0, 6000, -250000]$ |
\(y^2=x^3+6000x-250000\) |
5.12.0.a.2, 60.24.0-5.a.2.1, 70.24.1.d.2, 420.48.1.? |
$[(19625/11, 2973125/11)]$ |
29575.f2 |
29575w1 |
29575.f |
29575w |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 5^{9} \cdot 7 \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$910$ |
$48$ |
$1$ |
$5.638089514$ |
$1$ |
|
$0$ |
$93600$ |
$1.336668$ |
$4096/7$ |
$0.98030$ |
$3.77494$ |
$[0, 1, 1, 7042, -315506]$ |
\(y^2+y=x^3+x^2+7042x-315506\) |
5.12.0.a.2, 65.24.0-5.a.2.2, 70.24.1.d.2, 910.48.1.? |
$[(2957/2, 161871/2)]$ |
29575.t2 |
29575r1 |
29575.t |
29575r |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 5^{3} \cdot 7 \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$910$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$18720$ |
$0.531948$ |
$4096/7$ |
$0.98030$ |
$2.83692$ |
$[0, -1, 1, 282, -2637]$ |
\(y^2+y=x^3-x^2+282x-2637\) |
5.12.0.a.2, 65.24.0-5.a.2.1, 70.24.1.d.2, 910.48.1.? |
$[]$ |
50575.a2 |
50575bc1 |
50575.a |
50575bc |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 5^{3} \cdot 7 \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1190$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$35200$ |
$0.666080$ |
$4096/7$ |
$0.98030$ |
$2.84500$ |
$[0, 1, 1, 482, -5526]$ |
\(y^2+y=x^3+x^2+482x-5526\) |
5.12.0.a.2, 70.24.1.d.2, 85.24.0.?, 1190.48.1.? |
$[]$ |
50575.bi2 |
50575bh1 |
50575.bi |
50575bh |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 5^{9} \cdot 7 \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1190$ |
$48$ |
$1$ |
$17.86222775$ |
$1$ |
|
$0$ |
$176000$ |
$1.470800$ |
$4096/7$ |
$0.98030$ |
$3.73655$ |
$[0, -1, 1, 12042, -714807]$ |
\(y^2+y=x^3-x^2+12042x-714807\) |
5.12.0.a.2, 70.24.1.d.2, 85.24.0.?, 1190.48.1.? |
$[(623264677/534, 15575405511473/534)]$ |
63175.d2 |
63175r1 |
63175.d |
63175r |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 19^{2} \) |
\( - 5^{9} \cdot 7 \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1330$ |
$48$ |
$1$ |
$1.408226589$ |
$1$ |
|
$4$ |
$288000$ |
$1.526413$ |
$4096/7$ |
$0.98030$ |
$3.72173$ |
$[0, -1, 1, 15042, 987318]$ |
\(y^2+y=x^3-x^2+15042x+987318\) |
5.12.0.a.2, 70.24.1.d.2, 95.24.0.?, 1330.48.1.? |
$[(792, 22562)]$ |
63175.x2 |
63175y1 |
63175.x |
63175y |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 19^{2} \) |
\( - 5^{3} \cdot 7 \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1330$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$57600$ |
$0.721693$ |
$4096/7$ |
$0.98030$ |
$2.84812$ |
$[0, 1, 1, 602, 8139]$ |
\(y^2+y=x^3+x^2+602x+8139\) |
5.12.0.a.2, 70.24.1.d.2, 95.24.0.?, 1330.48.1.? |
$[]$ |
78400.df2 |
78400ko1 |
78400.df |
78400ko |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{9} \cdot 7^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$280$ |
$48$ |
$1$ |
$3.429901073$ |
$1$ |
|
$6$ |
$153600$ |
$1.373722$ |
$4096/7$ |
$0.98030$ |
$3.48784$ |
$[0, -1, 0, 8167, -399713]$ |
\(y^2=x^3-x^2+8167x-399713\) |
5.12.0.a.2, 40.24.0-5.a.2.5, 70.24.1.d.2, 280.48.1.? |
$[(293/2, 6125/2), (42, 125)]$ |
78400.ee2 |
78400ew1 |
78400.ee |
78400ew |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$280$ |
$48$ |
$1$ |
$0.737028269$ |
$1$ |
|
$2$ |
$30720$ |
$0.569002$ |
$4096/7$ |
$0.98030$ |
$2.63096$ |
$[0, -1, 0, 327, 3067]$ |
\(y^2=x^3-x^2+327x+3067\) |
5.12.0.a.2, 40.24.0-5.a.2.8, 70.24.1.d.2, 280.48.1.? |
$[(-2, 49)]$ |
78400.hi2 |
78400kj1 |
78400.hi |
78400kj |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$280$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$30720$ |
$0.569002$ |
$4096/7$ |
$0.98030$ |
$2.63096$ |
$[0, 1, 0, 327, -3067]$ |
\(y^2=x^3+x^2+327x-3067\) |
5.12.0.a.2, 40.24.0-5.a.2.6, 70.24.1.d.2, 280.48.1.? |
$[]$ |
78400.ik2 |
78400ej1 |
78400.ik |
78400ej |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{9} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$280$ |
$48$ |
$1$ |
$4.726669185$ |
$1$ |
|
$2$ |
$153600$ |
$1.373722$ |
$4096/7$ |
$0.98030$ |
$3.48784$ |
$[0, 1, 0, 8167, 399713]$ |
\(y^2=x^3+x^2+8167x+399713\) |
5.12.0.a.2, 40.24.0-5.a.2.7, 70.24.1.d.2, 280.48.1.? |
$[(1208, 42125)]$ |
92575.b2 |
92575ba1 |
92575.b |
92575ba |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 23^{2} \) |
\( - 5^{3} \cdot 7 \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1610$ |
$48$ |
$1$ |
$0.907316854$ |
$1$ |
|
$4$ |
$95040$ |
$0.817221$ |
$4096/7$ |
$0.98030$ |
$2.85319$ |
$[0, -1, 1, 882, 13788]$ |
\(y^2+y=x^3-x^2+882x+13788\) |
5.12.0.a.2, 70.24.1.d.2, 115.24.0.?, 1610.48.1.? |
$[(31, 264)]$ |
92575.bd2 |
92575bd1 |
92575.bd |
92575bd |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 23^{2} \) |
\( - 5^{9} \cdot 7 \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1610$ |
$48$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$475200$ |
$1.621941$ |
$4096/7$ |
$0.98030$ |
$3.69762$ |
$[0, 1, 1, 22042, 1767619]$ |
\(y^2+y=x^3+x^2+22042x+1767619\) |
5.12.0.a.2, 70.24.1.d.2, 115.24.0.?, 1610.48.1.? |
$[]$ |
100800.bq2 |
100800gy1 |
100800.bq |
100800gy |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$840$ |
$48$ |
$1$ |
$3.683400582$ |
$1$ |
|
$0$ |
$96000$ |
$0.950072$ |
$4096/7$ |
$0.98030$ |
$2.97049$ |
$[0, 0, 0, 1500, 31250]$ |
\(y^2=x^3+1500x+31250\) |
5.12.0.a.2, 70.24.1.d.2, 120.24.0.?, 840.48.1.? |
$[(-125/3, 2375/3)]$ |
100800.gf2 |
100800os1 |
100800.gf |
100800os |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$840$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$19200$ |
$0.145354$ |
$4096/7$ |
$0.98030$ |
$2.13231$ |
$[0, 0, 0, 60, -250]$ |
\(y^2=x^3+60x-250\) |
5.12.0.a.2, 70.24.1.d.2, 120.24.0.?, 840.48.1.? |
$[]$ |
100800.kb2 |
100800ib1 |
100800.kb |
100800ib |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$840$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$19200$ |
$0.145354$ |
$4096/7$ |
$0.98030$ |
$2.13231$ |
$[0, 0, 0, 60, 250]$ |
\(y^2=x^3+60x+250\) |
5.12.0.a.2, 70.24.1.d.2, 120.24.0.?, 840.48.1.? |
$[]$ |
100800.oi2 |
100800ps1 |
100800.oi |
100800ps |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{9} \cdot 7 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$840$ |
$48$ |
$1$ |
$7.302206128$ |
$1$ |
|
$0$ |
$96000$ |
$0.950072$ |
$4096/7$ |
$0.98030$ |
$2.97049$ |
$[0, 0, 0, 1500, -31250]$ |
\(y^2=x^3+1500x-31250\) |
5.12.0.a.2, 70.24.1.d.2, 120.24.0.?, 840.48.1.? |
$[(12375/13, 1508125/13)]$ |
147175.b2 |
147175a1 |
147175.b |
147175a |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 29^{2} \) |
\( - 5^{9} \cdot 7 \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2030$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$980000$ |
$1.737841$ |
$4096/7$ |
$0.98030$ |
$3.67044$ |
$[0, -1, 1, 35042, -3540182]$ |
\(y^2+y=x^3-x^2+35042x-3540182\) |
5.12.0.a.2, 70.24.1.d.2, 145.24.0.?, 2030.48.1.? |
$[]$ |
147175.s2 |
147175s1 |
147175.s |
147175s |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 29^{2} \) |
\( - 5^{3} \cdot 7 \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2030$ |
$48$ |
$1$ |
$19.10893085$ |
$1$ |
|
$0$ |
$196000$ |
$0.933122$ |
$4096/7$ |
$0.98030$ |
$2.85891$ |
$[0, 1, 1, 1402, -27761]$ |
\(y^2+y=x^3+x^2+1402x-27761\) |
5.12.0.a.2, 70.24.1.d.2, 145.24.0.?, 2030.48.1.? |
$[(246912797/2678, 4791989667999/2678)]$ |
148225.c2 |
148225b1 |
148225.c |
148225b |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 5^{9} \cdot 7^{7} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$770$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2592000$ |
$2.226097$ |
$4096/7$ |
$0.98030$ |
$4.16033$ |
$[0, -1, 1, 247042, -66131682]$ |
\(y^2+y=x^3-x^2+247042x-66131682\) |
5.12.0.a.2, 70.24.1.d.2, 110.24.0.?, 385.24.0.?, 770.48.1.? |
$[]$ |
148225.cv2 |
148225cv1 |
148225.cv |
148225cv |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 5^{3} \cdot 7^{7} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$770$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$518400$ |
$1.421377$ |
$4096/7$ |
$0.98030$ |
$3.34930$ |
$[0, 1, 1, 9882, -525101]$ |
\(y^2+y=x^3+x^2+9882x-525101\) |
5.12.0.a.2, 70.24.1.d.2, 110.24.0.?, 385.24.0.?, 770.48.1.? |
$[]$ |
168175.b2 |
168175b1 |
168175.b |
168175b |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 31^{2} \) |
\( - 5^{3} \cdot 7 \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2170$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$244800$ |
$0.966468$ |
$4096/7$ |
$0.98030$ |
$2.86048$ |
$[0, 1, 1, 1602, 35014]$ |
\(y^2+y=x^3+x^2+1602x+35014\) |
5.12.0.a.2, 70.24.1.d.2, 155.24.0.?, 2170.48.1.? |
$[]$ |
168175.bf2 |
168175bf1 |
168175.bf |
168175bf |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 31^{2} \) |
\( - 5^{9} \cdot 7 \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2170$ |
$48$ |
$1$ |
$8.221669543$ |
$1$ |
|
$0$ |
$1224000$ |
$1.771187$ |
$4096/7$ |
$0.98030$ |
$3.66300$ |
$[0, -1, 1, 40042, 4296693]$ |
\(y^2+y=x^3-x^2+40042x+4296693\) |
5.12.0.a.2, 70.24.1.d.2, 155.24.0.?, 2170.48.1.? |
$[(126833/68, 731524159/68)]$ |
176400.ea2 |
176400p1 |
176400.ea |
176400p |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{9} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$420$ |
$48$ |
$1$ |
$5.925055388$ |
$1$ |
|
$0$ |
$2304000$ |
$2.269600$ |
$4096/7$ |
$0.98030$ |
$4.14362$ |
$[0, 0, 0, 294000, 85750000]$ |
\(y^2=x^3+294000x+85750000\) |
5.12.0.a.2, 60.24.0-5.a.2.4, 70.24.1.d.2, 420.48.1.? |
$[(2625/8, 5065375/8)]$ |
176400.eb2 |
176400q1 |
176400.eb |
176400q |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{3} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$420$ |
$48$ |
$1$ |
$3.846911107$ |
$1$ |
|
$2$ |
$460800$ |
$1.464882$ |
$4096/7$ |
$0.98030$ |
$3.34426$ |
$[0, 0, 0, 11760, 686000]$ |
\(y^2=x^3+11760x+686000\) |
5.12.0.a.2, 60.24.0-5.a.2.3, 70.24.1.d.2, 420.48.1.? |
$[(665, 17395)]$ |
190575.d2 |
190575c1 |
190575.d |
190575c |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2} \) |
\( - 3^{6} \cdot 5^{3} \cdot 7 \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2310$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$324000$ |
$0.997727$ |
$4096/7$ |
$0.98030$ |
$2.86191$ |
$[0, 0, 1, 1815, -41594]$ |
\(y^2+y=x^3+1815x-41594\) |
5.12.0.a.2, 70.24.1.d.2, 165.24.0.?, 2310.48.1.? |
$[]$ |
190575.fc2 |
190575en1 |
190575.fc |
190575en |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2} \) |
\( - 3^{6} \cdot 5^{9} \cdot 7 \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2310$ |
$48$ |
$1$ |
$39.53987328$ |
$1$ |
|
$0$ |
$1620000$ |
$1.802446$ |
$4096/7$ |
$0.98030$ |
$3.65619$ |
$[0, 0, 1, 45375, -5199219]$ |
\(y^2+y=x^3+45375x-5199219\) |
5.12.0.a.2, 70.24.1.d.2, 165.24.0.?, 2310.48.1.? |
$[(1160888037577569625/59388162, 1411145224428645660864994361/59388162)]$ |
207025.e2 |
207025e1 |
207025.e |
207025e |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 5^{9} \cdot 7^{7} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$910$ |
$48$ |
$1$ |
$1.973611952$ |
$1$ |
|
$2$ |
$4492800$ |
$2.309624$ |
$4096/7$ |
$0.98030$ |
$4.12866$ |
$[0, -1, 1, 345042, 108908568]$ |
\(y^2+y=x^3-x^2+345042x+108908568\) |
5.12.0.a.2, 70.24.1.d.2, 130.24.0.?, 455.24.0.?, 910.48.1.? |
$[(292, 15312)]$ |
207025.cu2 |
207025cr1 |
207025.cu |
207025cr |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 5^{3} \cdot 7^{7} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$910$ |
$48$ |
$1$ |
$13.40195347$ |
$1$ |
|
$0$ |
$898560$ |
$1.504904$ |
$4096/7$ |
$0.98030$ |
$3.33976$ |
$[0, 1, 1, 13802, 876789]$ |
\(y^2+y=x^3+x^2+13802x+876789\) |
5.12.0.a.2, 70.24.1.d.2, 130.24.0.?, 455.24.0.?, 910.48.1.? |
$[(-2481363/262, 10352808071/262)]$ |
239575.b2 |
239575b1 |
239575.b |
239575b |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 37^{2} \) |
\( - 5^{9} \cdot 7 \cdot 37^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2590$ |
$48$ |
$1$ |
$9.150496124$ |
$1$ |
|
$4$ |
$2073600$ |
$1.859652$ |
$4096/7$ |
$0.98030$ |
$3.64406$ |
$[0, 1, 1, 57042, -7309256]$ |
\(y^2+y=x^3+x^2+57042x-7309256\) |
5.12.0.a.2, 70.24.1.d.2, 185.24.0.?, 2590.48.1.? |
$[(604, 15743), (208, 3687)]$ |
239575.t2 |
239575t1 |
239575.t |
239575t |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 37^{2} \) |
\( - 5^{3} \cdot 7 \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2590$ |
$48$ |
$1$ |
$7.412337689$ |
$1$ |
|
$0$ |
$414720$ |
$1.054934$ |
$4096/7$ |
$0.98030$ |
$2.86446$ |
$[0, -1, 1, 2282, -59387]$ |
\(y^2+y=x^3-x^2+2282x-59387\) |
5.12.0.a.2, 70.24.1.d.2, 185.24.0.?, 2590.48.1.? |
$[(28309/30, 5554223/30)]$ |