Learn more

Refine search


Results (1-50 of 74 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
175.a2 175.a \( 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.132925999$ $[0, -1, 1, 2, -2]$ \(y^2+y=x^3-x^2+2x-2\) 5.24.0-5.a.2.2, 70.48.1-70.d.2.4
175.c2 175.c \( 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 42, -131]$ \(y^2+y=x^3+x^2+42x-131\) 5.24.0-5.a.2.1, 70.48.1-70.d.2.3
1225.a2 1225.a \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.155392136$ $[0, 1, 1, 82, 424]$ \(y^2+y=x^3+x^2+82x+424\) 5.12.0.a.2, 10.24.0-5.a.2.1, 35.24.0-5.a.2.2, 70.48.1-70.d.2.2
1225.i2 1225.i \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.712806605$ $[0, -1, 1, 2042, 48943]$ \(y^2+y=x^3-x^2+2042x+48943\) 5.12.0.a.2, 10.24.0-5.a.2.2, 35.24.0-5.a.2.1, 70.48.1-70.d.2.1
1575.a2 1575.a \( 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.849174825$ $[0, 0, 1, 375, 3906]$ \(y^2+y=x^3+375x+3906\) 5.12.0.a.2, 15.24.0-5.a.2.2, 70.24.1.d.2, 210.48.1.?
1575.k2 1575.k \( 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 15, 31]$ \(y^2+y=x^3+15x+31\) 5.12.0.a.2, 15.24.0-5.a.2.1, 70.24.1.d.2, 210.48.1.?
2800.l2 2800.l \( 2^{4} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 667, 9037]$ \(y^2=x^3-x^2+667x+9037\) 5.12.0.a.2, 20.24.0-5.a.2.1, 70.24.1.d.2, 140.48.1.?
2800.w2 2800.w \( 2^{4} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.084555083$ $[0, 1, 0, 27, 83]$ \(y^2=x^3+x^2+27x+83\) 5.12.0.a.2, 20.24.0-5.a.2.2, 70.24.1.d.2, 140.48.1.?
11025.d2 11025.d \( 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 18375, -1339844]$ \(y^2+y=x^3+18375x-1339844\) 5.12.0.a.2, 30.24.0-5.a.2.1, 70.24.1.d.2, 105.24.0.?, 210.48.1.?
11025.bq2 11025.bq \( 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 735, -10719]$ \(y^2+y=x^3+735x-10719\) 5.12.0.a.2, 30.24.0-5.a.2.2, 70.24.1.d.2, 105.24.0.?, 210.48.1.?
11200.t2 11200.t \( 2^{6} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $0.643212777$ $[0, -1, 0, 7, 7]$ \(y^2=x^3-x^2+7x+7\) 5.12.0.a.2, 40.24.0-5.a.2.1, 70.24.1.d.2, 280.48.1.?
11200.ba2 11200.ba \( 2^{6} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 167, -1213]$ \(y^2=x^3-x^2+167x-1213\) 5.12.0.a.2, 40.24.0-5.a.2.4, 70.24.1.d.2, 280.48.1.?
11200.ci2 11200.ci \( 2^{6} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 167, 1213]$ \(y^2=x^3+x^2+167x+1213\) 5.12.0.a.2, 40.24.0-5.a.2.2, 70.24.1.d.2, 280.48.1.?
11200.cs2 11200.cs \( 2^{6} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $1.484766292$ $[0, 1, 0, 7, -7]$ \(y^2=x^3+x^2+7x-7\) 5.12.0.a.2, 40.24.0-5.a.2.3, 70.24.1.d.2, 280.48.1.?
19600.bp2 19600.bp \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1307, -25843]$ \(y^2=x^3-x^2+1307x-25843\) 5.12.0.a.2, 20.24.0-5.a.2.3, 70.24.1.d.2, 140.48.1.?
19600.cy2 19600.cy \( 2^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 32667, -3165037]$ \(y^2=x^3+x^2+32667x-3165037\) 5.12.0.a.2, 20.24.0-5.a.2.4, 70.24.1.d.2, 140.48.1.?
21175.d2 21175.d \( 5^{2} \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 5042, 194244]$ \(y^2+y=x^3+x^2+5042x+194244\) 5.12.0.a.2, 55.24.0-5.a.2.2, 70.24.1.d.2, 770.48.1.?
21175.bk2 21175.bk \( 5^{2} \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $3.837613806$ $[0, -1, 1, 202, 1473]$ \(y^2+y=x^3-x^2+202x+1473\) 5.12.0.a.2, 55.24.0-5.a.2.1, 70.24.1.d.2, 770.48.1.?
25200.v2 25200.v \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 240, -2000]$ \(y^2=x^3+240x-2000\) 5.12.0.a.2, 60.24.0-5.a.2.2, 70.24.1.d.2, 420.48.1.?
25200.dp2 25200.dp \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $7.734536141$ $[0, 0, 0, 6000, -250000]$ \(y^2=x^3+6000x-250000\) 5.12.0.a.2, 60.24.0-5.a.2.1, 70.24.1.d.2, 420.48.1.?
29575.f2 29575.f \( 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $5.638089514$ $[0, 1, 1, 7042, -315506]$ \(y^2+y=x^3+x^2+7042x-315506\) 5.12.0.a.2, 65.24.0-5.a.2.2, 70.24.1.d.2, 910.48.1.?
29575.t2 29575.t \( 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 282, -2637]$ \(y^2+y=x^3-x^2+282x-2637\) 5.12.0.a.2, 65.24.0-5.a.2.1, 70.24.1.d.2, 910.48.1.?
50575.a2 50575.a \( 5^{2} \cdot 7 \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 482, -5526]$ \(y^2+y=x^3+x^2+482x-5526\) 5.12.0.a.2, 70.24.1.d.2, 85.24.0.?, 1190.48.1.?
50575.bi2 50575.bi \( 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $17.86222775$ $[0, -1, 1, 12042, -714807]$ \(y^2+y=x^3-x^2+12042x-714807\) 5.12.0.a.2, 70.24.1.d.2, 85.24.0.?, 1190.48.1.?
63175.d2 63175.d \( 5^{2} \cdot 7 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.408226589$ $[0, -1, 1, 15042, 987318]$ \(y^2+y=x^3-x^2+15042x+987318\) 5.12.0.a.2, 70.24.1.d.2, 95.24.0.?, 1330.48.1.?
63175.x2 63175.x \( 5^{2} \cdot 7 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 602, 8139]$ \(y^2+y=x^3+x^2+602x+8139\) 5.12.0.a.2, 70.24.1.d.2, 95.24.0.?, 1330.48.1.?
78400.df2 78400.df \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $3.429901073$ $[0, -1, 0, 8167, -399713]$ \(y^2=x^3-x^2+8167x-399713\) 5.12.0.a.2, 40.24.0-5.a.2.5, 70.24.1.d.2, 280.48.1.?
78400.ee2 78400.ee \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.737028269$ $[0, -1, 0, 327, 3067]$ \(y^2=x^3-x^2+327x+3067\) 5.12.0.a.2, 40.24.0-5.a.2.8, 70.24.1.d.2, 280.48.1.?
78400.hi2 78400.hi \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 327, -3067]$ \(y^2=x^3+x^2+327x-3067\) 5.12.0.a.2, 40.24.0-5.a.2.6, 70.24.1.d.2, 280.48.1.?
78400.ik2 78400.ik \( 2^{6} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $4.726669185$ $[0, 1, 0, 8167, 399713]$ \(y^2=x^3+x^2+8167x+399713\) 5.12.0.a.2, 40.24.0-5.a.2.7, 70.24.1.d.2, 280.48.1.?
92575.b2 92575.b \( 5^{2} \cdot 7 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.907316854$ $[0, -1, 1, 882, 13788]$ \(y^2+y=x^3-x^2+882x+13788\) 5.12.0.a.2, 70.24.1.d.2, 115.24.0.?, 1610.48.1.?
92575.bd2 92575.bd \( 5^{2} \cdot 7 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 22042, 1767619]$ \(y^2+y=x^3+x^2+22042x+1767619\) 5.12.0.a.2, 70.24.1.d.2, 115.24.0.?, 1610.48.1.?
100800.bq2 100800.bq \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $3.683400582$ $[0, 0, 0, 1500, 31250]$ \(y^2=x^3+1500x+31250\) 5.12.0.a.2, 70.24.1.d.2, 120.24.0.?, 840.48.1.?
100800.gf2 100800.gf \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 60, -250]$ \(y^2=x^3+60x-250\) 5.12.0.a.2, 70.24.1.d.2, 120.24.0.?, 840.48.1.?
100800.kb2 100800.kb \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 60, 250]$ \(y^2=x^3+60x+250\) 5.12.0.a.2, 70.24.1.d.2, 120.24.0.?, 840.48.1.?
100800.oi2 100800.oi \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) $1$ $\mathsf{trivial}$ $7.302206128$ $[0, 0, 0, 1500, -31250]$ \(y^2=x^3+1500x-31250\) 5.12.0.a.2, 70.24.1.d.2, 120.24.0.?, 840.48.1.?
147175.b2 147175.b \( 5^{2} \cdot 7 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 35042, -3540182]$ \(y^2+y=x^3-x^2+35042x-3540182\) 5.12.0.a.2, 70.24.1.d.2, 145.24.0.?, 2030.48.1.?
147175.s2 147175.s \( 5^{2} \cdot 7 \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $19.10893085$ $[0, 1, 1, 1402, -27761]$ \(y^2+y=x^3+x^2+1402x-27761\) 5.12.0.a.2, 70.24.1.d.2, 145.24.0.?, 2030.48.1.?
148225.c2 148225.c \( 5^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 247042, -66131682]$ \(y^2+y=x^3-x^2+247042x-66131682\) 5.12.0.a.2, 70.24.1.d.2, 110.24.0.?, 385.24.0.?, 770.48.1.?
148225.cv2 148225.cv \( 5^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 9882, -525101]$ \(y^2+y=x^3+x^2+9882x-525101\) 5.12.0.a.2, 70.24.1.d.2, 110.24.0.?, 385.24.0.?, 770.48.1.?
168175.b2 168175.b \( 5^{2} \cdot 7 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 1602, 35014]$ \(y^2+y=x^3+x^2+1602x+35014\) 5.12.0.a.2, 70.24.1.d.2, 155.24.0.?, 2170.48.1.?
168175.bf2 168175.bf \( 5^{2} \cdot 7 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $8.221669543$ $[0, -1, 1, 40042, 4296693]$ \(y^2+y=x^3-x^2+40042x+4296693\) 5.12.0.a.2, 70.24.1.d.2, 155.24.0.?, 2170.48.1.?
176400.ea2 176400.ea \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $5.925055388$ $[0, 0, 0, 294000, 85750000]$ \(y^2=x^3+294000x+85750000\) 5.12.0.a.2, 60.24.0-5.a.2.4, 70.24.1.d.2, 420.48.1.?
176400.eb2 176400.eb \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.846911107$ $[0, 0, 0, 11760, 686000]$ \(y^2=x^3+11760x+686000\) 5.12.0.a.2, 60.24.0-5.a.2.3, 70.24.1.d.2, 420.48.1.?
190575.d2 190575.d \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 1815, -41594]$ \(y^2+y=x^3+1815x-41594\) 5.12.0.a.2, 70.24.1.d.2, 165.24.0.?, 2310.48.1.?
190575.fc2 190575.fc \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $39.53987328$ $[0, 0, 1, 45375, -5199219]$ \(y^2+y=x^3+45375x-5199219\) 5.12.0.a.2, 70.24.1.d.2, 165.24.0.?, 2310.48.1.?
207025.e2 207025.e \( 5^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.973611952$ $[0, -1, 1, 345042, 108908568]$ \(y^2+y=x^3-x^2+345042x+108908568\) 5.12.0.a.2, 70.24.1.d.2, 130.24.0.?, 455.24.0.?, 910.48.1.?
207025.cu2 207025.cu \( 5^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $13.40195347$ $[0, 1, 1, 13802, 876789]$ \(y^2+y=x^3+x^2+13802x+876789\) 5.12.0.a.2, 70.24.1.d.2, 130.24.0.?, 455.24.0.?, 910.48.1.?
239575.b2 239575.b \( 5^{2} \cdot 7 \cdot 37^{2} \) $2$ $\mathsf{trivial}$ $9.150496124$ $[0, 1, 1, 57042, -7309256]$ \(y^2+y=x^3+x^2+57042x-7309256\) 5.12.0.a.2, 70.24.1.d.2, 185.24.0.?, 2590.48.1.?
239575.t2 239575.t \( 5^{2} \cdot 7 \cdot 37^{2} \) $1$ $\mathsf{trivial}$ $7.412337689$ $[0, -1, 1, 2282, -59387]$ \(y^2+y=x^3-x^2+2282x-59387\) 5.12.0.a.2, 70.24.1.d.2, 185.24.0.?, 2590.48.1.?
Next   displayed columns for results