Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 175a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
175.a2 | 175a1 | \([0, -1, 1, 2, -2]\) | \(4096/7\) | \(-875\) | \([]\) | \(8\) | \(-0.75053\) | \(\Gamma_0(N)\)-optimal |
175.a1 | 175a2 | \([0, -1, 1, -148, 748]\) | \(-2887553024/16807\) | \(-2100875\) | \([5]\) | \(40\) | \(0.054193\) |
Rank
sage: E.rank()
The elliptic curves in class 175a have rank \(1\).
Complex multiplication
The elliptic curves in class 175a do not have complex multiplication.Modular form 175.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.