Learn more

Refine search


Results (1-50 of 169 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
24.a5 24.a \( 2^{3} \cdot 3 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, 1, 0]$ \(y^2=x^3-x^2+x\) 2.3.0.a.1, 4.12.0-4.c.1.1, 6.6.0.a.1, 8.48.0-8.ba.1.2, 12.24.0-12.g.1.2, $\ldots$
48.a5 48.a \( 2^{4} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 1, 0]$ \(y^2=x^3+x^2+x\) 2.3.0.a.1, 4.12.0-4.c.1.2, 6.6.0.a.1, 8.48.0-8.ba.1.1, 12.24.0-12.g.1.1, $\ldots$
72.a5 72.a \( 2^{3} \cdot 3^{2} \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, 6, -7]$ \(y^2=x^3+6x-7\) 2.3.0.a.1, 4.12.0-4.c.1.1, 6.6.0.a.1, 8.48.0-8.ba.1.7, 12.24.0-12.g.1.2, $\ldots$
144.b5 144.b \( 2^{4} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 6, 7]$ \(y^2=x^3+6x+7\) 2.3.0.a.1, 4.12.0-4.c.1.2, 6.6.0.a.1, 8.48.0-8.ba.1.8, 12.24.0-12.g.1.1, $\ldots$
192.b5 192.b \( 2^{6} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 3, -3]$ \(y^2=x^3-x^2+3x-3\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.48.0-8.ba.1.6, 12.12.0.g.1, $\ldots$
192.d5 192.d \( 2^{6} \cdot 3 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 3, 3]$ \(y^2=x^3+x^2+3x+3\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.48.0-8.ba.1.5, 12.12.0.g.1, $\ldots$
576.b5 576.b \( 2^{6} \cdot 3^{2} \) $1$ $\Z/2\Z$ $0.539636932$ $[0, 0, 0, 24, 56]$ \(y^2=x^3+24x+56\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.48.0-8.ba.1.3, 12.12.0.g.1, $\ldots$
576.d5 576.d \( 2^{6} \cdot 3^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 24, -56]$ \(y^2=x^3+24x-56\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.48.0-8.ba.1.4, 12.12.0.g.1, $\ldots$
600.h5 600.h \( 2^{3} \cdot 3 \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 17, 38]$ \(y^2=x^3+x^2+17x+38\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
1176.i5 1176.i \( 2^{3} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 33, -78]$ \(y^2=x^3+x^2+33x-78\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
1200.d5 1200.d \( 2^{4} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $2.993933771$ $[0, -1, 0, 17, -38]$ \(y^2=x^3-x^2+17x-38\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
1800.m5 1800.m \( 2^{3} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $1.665930347$ $[0, 0, 0, 150, -875]$ \(y^2=x^3+150x-875\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
2352.i5 2352.i \( 2^{4} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 33, 78]$ \(y^2=x^3-x^2+33x+78\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
2904.c5 2904.c \( 2^{3} \cdot 3 \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 81, -372]$ \(y^2=x^3-x^2+81x-372\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
3528.d5 3528.d \( 2^{3} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $0.818877155$ $[0, 0, 0, 294, 2401]$ \(y^2=x^3+294x+2401\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
3600.v5 3600.v \( 2^{4} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 150, 875]$ \(y^2=x^3+150x+875\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
4056.i5 4056.i \( 2^{3} \cdot 3 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.431280778$ $[0, -1, 0, 113, 532]$ \(y^2=x^3-x^2+113x+532\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
4800.q5 4800.q \( 2^{6} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $2.249823046$ $[0, -1, 0, 67, 237]$ \(y^2=x^3-x^2+67x+237\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
4800.cc5 4800.cc \( 2^{6} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $4.274166887$ $[0, 1, 0, 67, -237]$ \(y^2=x^3+x^2+67x-237\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
5808.s5 5808.s \( 2^{4} \cdot 3 \cdot 11^{2} \) $1$ $\Z/2\Z$ $6.469097710$ $[0, 1, 0, 81, 372]$ \(y^2=x^3+x^2+81x+372\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
6936.p5 6936.p \( 2^{3} \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z$ $5.080054440$ $[0, 1, 0, 193, 1338]$ \(y^2=x^3+x^2+193x+1338\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
7056.q5 7056.q \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.290579554$ $[0, 0, 0, 294, -2401]$ \(y^2=x^3+294x-2401\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
8112.be5 8112.be \( 2^{4} \cdot 3 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 113, -532]$ \(y^2=x^3+x^2+113x-532\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
8664.j5 8664.j \( 2^{3} \cdot 3 \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.125190167$ $[0, 1, 0, 241, -1698]$ \(y^2=x^3+x^2+241x-1698\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
8712.u5 8712.u \( 2^{3} \cdot 3^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 726, 9317]$ \(y^2=x^3+726x+9317\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
9408.h5 9408.h \( 2^{6} \cdot 3 \cdot 7^{2} \) $2$ $\Z/2\Z$ $2.592914450$ $[0, -1, 0, 131, -755]$ \(y^2=x^3-x^2+131x-755\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
9408.cc5 9408.cc \( 2^{6} \cdot 3 \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 131, 755]$ \(y^2=x^3+x^2+131x+755\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
12168.j5 12168.j \( 2^{3} \cdot 3^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.987292023$ $[0, 0, 0, 1014, -15379]$ \(y^2=x^3+1014x-15379\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
12696.k5 12696.k \( 2^{3} \cdot 3 \cdot 23^{2} \) $1$ $\Z/2\Z$ $6.070300564$ $[0, -1, 0, 353, -3272]$ \(y^2=x^3-x^2+353x-3272\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
13872.p5 13872.p \( 2^{4} \cdot 3 \cdot 17^{2} \) $1$ $\Z/2\Z$ $11.93842994$ $[0, -1, 0, 193, -1338]$ \(y^2=x^3-x^2+193x-1338\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
14400.ck5 14400.ck \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $1$ $\Z/2\Z$ $2.841664688$ $[0, 0, 0, 600, 7000]$ \(y^2=x^3+600x+7000\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
14400.cy5 14400.cy \( 2^{6} \cdot 3^{2} \cdot 5^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 600, -7000]$ \(y^2=x^3+600x-7000\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
17328.d5 17328.d \( 2^{4} \cdot 3 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 241, 1698]$ \(y^2=x^3-x^2+241x+1698\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
17424.bu5 17424.bu \( 2^{4} \cdot 3^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $9.982747053$ $[0, 0, 0, 726, -9317]$ \(y^2=x^3+726x-9317\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
20184.i5 20184.i \( 2^{3} \cdot 3 \cdot 29^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 561, 6510]$ \(y^2=x^3+x^2+561x+6510\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
20808.i5 20808.i \( 2^{3} \cdot 3^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1734, -34391]$ \(y^2=x^3+1734x-34391\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
23064.i5 23064.i \( 2^{3} \cdot 3 \cdot 31^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 641, -7510]$ \(y^2=x^3+x^2+641x-7510\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
23232.bo5 23232.bo \( 2^{6} \cdot 3 \cdot 11^{2} \) $1$ $\Z/2\Z$ $5.664639104$ $[0, -1, 0, 323, 2653]$ \(y^2=x^3-x^2+323x+2653\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
23232.do5 23232.do \( 2^{6} \cdot 3 \cdot 11^{2} \) $1$ $\Z/2\Z$ $10.00868682$ $[0, 1, 0, 323, -2653]$ \(y^2=x^3+x^2+323x-2653\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
24336.o5 24336.o \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $2$ $\Z/2\Z$ $5.094658422$ $[0, 0, 0, 1014, 15379]$ \(y^2=x^3+1014x+15379\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
25392.be5 25392.be \( 2^{4} \cdot 3 \cdot 23^{2} \) $1$ $\Z/2\Z$ $17.36564378$ $[0, 1, 0, 353, 3272]$ \(y^2=x^3+x^2+353x+3272\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
25992.w5 25992.w \( 2^{3} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 2166, 48013]$ \(y^2=x^3+2166x+48013\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
28224.et5 28224.et \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 1176, -19208]$ \(y^2=x^3+1176x-19208\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
28224.fl5 28224.fl \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $1.286790405$ $[0, 0, 0, 1176, 19208]$ \(y^2=x^3+1176x+19208\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
29400.ce5 29400.ce \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 817, -11388]$ \(y^2=x^3-x^2+817x-11388\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
32448.n5 32448.n \( 2^{6} \cdot 3 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 451, -4707]$ \(y^2=x^3-x^2+451x-4707\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
32448.ch5 32448.ch \( 2^{6} \cdot 3 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 451, 4707]$ \(y^2=x^3+x^2+451x+4707\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
32856.g5 32856.g \( 2^{3} \cdot 3 \cdot 37^{2} \) $1$ $\Z/2\Z$ $4.401047932$ $[0, -1, 0, 913, 12828]$ \(y^2=x^3-x^2+913x+12828\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
38088.g5 38088.g \( 2^{3} \cdot 3^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $2.520022005$ $[0, 0, 0, 3174, 85169]$ \(y^2=x^3+3174x+85169\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
40344.c5 40344.c \( 2^{3} \cdot 3 \cdot 41^{2} \) $1$ $\Z/2\Z$ $8.164855646$ $[0, 1, 0, 1121, 18242]$ \(y^2=x^3+x^2+1121x+18242\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.ba.1, 12.12.0.g.1, $\ldots$
Next   displayed columns for results