Learn more

Refine search


Results (29 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
1122.b2 1122.b \( 2 \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.379272727$ $[1, 1, 0, -264, -192]$ \(y^2+xy=x^3+x^2-264x-192\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-1, 9)]$
3366.l2 3366.l \( 2 \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.096754743$ $[1, -1, 1, -2381, 2805]$ \(y^2+xy+y=x^3-x^2-2381x+2805\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-37, 216)]$
8976.bc2 8976.bc \( 2^{4} \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -4232, 3828]$ \(y^2=x^3+x^2-4232x+3828\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
12342.x2 12342.x \( 2 \cdot 3 \cdot 11^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -32007, 95613]$ \(y^2+xy+y=x^3+x^2-32007x+95613\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
19074.i2 19074.i \( 2 \cdot 3 \cdot 11 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.296031859$ $[1, 0, 1, -76447, -408526]$ \(y^2+xy+y=x^3-76447x-408526\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-9, 532)]$
26928.q2 26928.q \( 2^{4} \cdot 3^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -38091, -141446]$ \(y^2=x^3-38091x-141446\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
28050.dk2 28050.dk \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -6613, -10783]$ \(y^2+xy=x^3-6613x-10783\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
35904.i2 35904.i \( 2^{6} \cdot 3 \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -16929, 47553]$ \(y^2=x^3-x^2-16929x+47553\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
35904.ca2 35904.ca \( 2^{6} \cdot 3 \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.915238162$ $[0, 1, 0, -16929, -47553]$ \(y^2=x^3+x^2-16929x-47553\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-22, 561)]$
37026.e2 37026.e \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.099335939$ $[1, -1, 0, -288063, -2869619]$ \(y^2+xy=x^3-x^2-288063x-2869619\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(894, 20849)]$
54978.p2 54978.p \( 2 \cdot 3 \cdot 7^{2} \cdot 11 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -12962, 26996]$ \(y^2+xy+y=x^3-12962x+26996\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
57222.bt2 57222.bt \( 2 \cdot 3^{2} \cdot 11 \cdot 17^{2} \) $1$ $\Z/2\Z$ $3.264909862$ $[1, -1, 1, -688019, 11030195]$ \(y^2+xy+y=x^3-x^2-688019x+11030195\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(13, 1438)]$
84150.ct2 84150.ct \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.237687404$ $[1, -1, 0, -59517, 291141]$ \(y^2+xy=x^3-x^2-59517x+291141\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-21, 1248)]$
98736.de2 98736.de \( 2^{4} \cdot 3 \cdot 11^{2} \cdot 17 \) $1$ $\Z/2\Z$ $5.927099383$ $[0, 1, 0, -512112, -7143468]$ \(y^2=x^3+x^2-512112x-7143468\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-17689/5, 151734/5)]$
107712.do2 107712.do \( 2^{6} \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $7.254166268$ $[0, 0, 0, -152364, 1131568]$ \(y^2=x^3-152364x+1131568\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-4104/5, 582556/5)]$
107712.ec2 107712.ec \( 2^{6} \cdot 3^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $1.416908689$ $[0, 0, 0, -152364, -1131568]$ \(y^2=x^3-152364x-1131568\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(496, 6732)]$
152592.i2 152592.i \( 2^{4} \cdot 3 \cdot 11 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1223144, 26145648]$ \(y^2=x^3-x^2-1223144x+26145648\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
164934.dz2 164934.dz \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $0.883913819$ $[1, -1, 1, -116654, -728899]$ \(y^2+xy+y=x^3-x^2-116654x-728899\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-47, 2179)]$
189618.ba2 189618.ba \( 2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.780403066$ $[1, 1, 1, -44704, -198463]$ \(y^2+xy+y=x^3+x^2-44704x-198463\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-59, 1525)]$
209814.cw2 209814.cw \( 2 \cdot 3 \cdot 11^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -9250029, 534497745]$ \(y^2+xy=x^3-9250029x+534497745\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
224400.bq2 224400.bq \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17 \) $2$ $\Z/2\Z$ $3.378372400$ $[0, -1, 0, -105808, 690112]$ \(y^2=x^3-x^2-105808x+690112\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-72, 2816), (-303, 2200)]$
296208.bd2 296208.bd \( 2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -4609011, 188264626]$ \(y^2=x^3-4609011x+188264626\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
308550.dn2 308550.dn \( 2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 17 \) $1$ $\Z/2\Z$ $9.014999153$ $[1, 0, 1, -800176, 13551998]$ \(y^2+xy+y=x^3-800176x+13551998\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(188257/3, 81325489/3)]$
394944.q2 394944.q \( 2^{6} \cdot 3 \cdot 11^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2048449, -55099295]$ \(y^2=x^3-x^2-2048449x-55099295\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
394944.fr2 394944.fr \( 2^{6} \cdot 3 \cdot 11^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2048449, 55099295]$ \(y^2=x^3+x^2-2048449x+55099295\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
405042.dm2 405042.dm \( 2 \cdot 3 \cdot 11 \cdot 17 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -95492, 553488]$ \(y^2+xy=x^3-95492x+553488\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
439824.w2 439824.w \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 11 \cdot 17 \) $1$ $\Z/2\Z$ $2.198213030$ $[0, -1, 0, -207384, -1727760]$ \(y^2=x^3-x^2-207384x-1727760\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(-422, 3234)]$
457776.eo2 457776.eo \( 2^{4} \cdot 3^{2} \cdot 11 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -11008299, -694924198]$ \(y^2=x^3-11008299x-694924198\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[ ]$
476850.gr2 476850.gr \( 2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 17^{2} \) $1$ $\Z/2\Z$ $1.100461013$ $[1, 1, 1, -1911163, -51065719]$ \(y^2+xy+y=x^3+x^2-1911163x-51065719\) 2.3.0.a.1, 66.6.0.a.1, 136.6.0.?, 4488.12.0.? $[(2551, 106810)]$
  displayed columns for results