Properties

Label 19074k
Number of curves 2
Conductor 19074
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("19074.i1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 19074k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
19074.i2 19074k1 [1, 0, 1, -76447, -408526] [2] 138240 \(\Gamma_0(N)\)-optimal
19074.i1 19074k2 [1, 0, 1, -862527, -307608590] [2] 276480  

Rank

sage: E.rank()
 

The elliptic curves in class 19074k have rank \(1\).

Modular form 19074.2.a.i

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} - 2q^{5} - q^{6} + 2q^{7} - q^{8} + q^{9} + 2q^{10} + q^{11} + q^{12} - 2q^{14} - 2q^{15} + q^{16} - q^{18} - 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.