Learn more

Refine search


Results (1-50 of 52 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
882.a2 882.a \( 2 \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.548686226$ $[1, -1, 0, 579, 366533]$ \(y^2+xy=x^3-x^2+579x+366533\) 3.8.0-3.a.1.1, 9.24.0-9.b.1.1, 24.16.0-24.d.1.7, 63.72.0-63.i.1.3, 72.48.0.?, $\ldots$ $[(37, 643)]$
882.e2 882.e \( 2 \cdot 3^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 12, -1072]$ \(y^2+xy=x^3-x^2+12x-1072\) 3.4.0.a.1, 9.12.0.b.1, 21.8.0-3.a.1.2, 24.8.0.d.1, 63.72.0-63.i.1.2, $\ldots$ $[ ]$
882.h2 882.h \( 2 \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.071245209$ $[1, -1, 1, 1, 39]$ \(y^2+xy+y=x^3-x^2+x+39\) 3.4.0.a.1, 9.12.0.b.1, 21.8.0-3.a.1.1, 24.8.0.d.1, 63.72.0-63.i.1.1, $\ldots$ $[(-1, 6)]$
882.j2 882.j \( 2 \cdot 3^{2} \cdot 7^{2} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, 64, -13597]$ \(y^2+xy+y=x^3-x^2+64x-13597\) 3.8.0-3.a.1.2, 9.24.0-9.b.1.2, 24.16.0-24.d.1.8, 63.72.0-63.i.1.4, 72.48.0.?, $\ldots$ $[ ]$
7056.e2 7056.e \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 9261, -23467374]$ \(y^2=x^3+9261x-23467374\) 3.4.0.a.1, 9.12.0.b.1, 12.8.0-3.a.1.2, 24.16.0-24.d.1.4, 36.24.0-9.b.1.1, $\ldots$ $[ ]$
7056.h2 7056.h \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.630718420$ $[0, 0, 0, 21, -2534]$ \(y^2=x^3+21x-2534\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(53, 384)]$
7056.bx2 7056.bx \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.883139121$ $[0, 0, 0, 189, 68418]$ \(y^2=x^3+189x+68418\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(-33, 162)]$
7056.by2 7056.by \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1029, 869162]$ \(y^2=x^3+1029x+869162\) 3.4.0.a.1, 9.12.0.b.1, 12.8.0-3.a.1.1, 24.16.0-24.d.1.3, 36.24.0-9.b.1.2, $\ldots$ $[ ]$
22050.l2 22050.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $7.566869598$ $[1, -1, 0, 1608, -1697984]$ \(y^2+xy=x^3-x^2+1608x-1697984\) 3.4.0.a.1, 9.12.0.b.1, 15.8.0-3.a.1.2, 24.8.0.d.1, 45.24.0-9.b.1.1, $\ldots$ $[(3275, 185771)]$
22050.p2 22050.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 33, 4941]$ \(y^2+xy=x^3-x^2+33x+4941\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[ ]$
22050.fa2 22050.fa \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 14470, 45831097]$ \(y^2+xy+y=x^3-x^2+14470x+45831097\) 3.4.0.a.1, 9.12.0.b.1, 15.8.0-3.a.1.1, 24.8.0.d.1, 45.24.0-9.b.1.2, $\ldots$ $[ ]$
22050.fb2 22050.fb \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.334446267$ $[1, -1, 1, 295, -133703]$ \(y^2+xy+y=x^3-x^2+295x-133703\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(55, 188)]$
28224.p2 28224.p \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 4116, 6953296]$ \(y^2=x^3+4116x+6953296\) 3.4.0.a.1, 9.12.0.b.1, 12.8.0-3.a.1.4, 24.16.0-24.d.1.6, 36.24.0-9.b.1.3, $\ldots$ $[ ]$
28224.r2 28224.r \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 756, -547344]$ \(y^2=x^3+756x-547344\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 42.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ $[ ]$
28224.v2 28224.v \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.979995524$ $[0, 0, 0, 4116, -6953296]$ \(y^2=x^3+4116x-6953296\) 3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.b.1, 18.24.0-9.b.1.2, 24.16.0-24.d.1.1, $\ldots$ $[(196, 1176)]$
28224.x2 28224.x \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.272993569$ $[0, 0, 0, 756, 547344]$ \(y^2=x^3+756x+547344\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(-62, 512)]$
28224.fr2 28224.fr \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.530944124$ $[0, 0, 0, 37044, 187738992]$ \(y^2=x^3+37044x+187738992\) 3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.b.1, 18.24.0-9.b.1.1, 24.16.0-24.d.1.2, $\ldots$ $[(78, 13824)]$
28224.ft2 28224.ft \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.484051687$ $[0, 0, 0, 84, -20272]$ \(y^2=x^3+84x-20272\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(37, 183)]$
28224.fx2 28224.fx \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 37044, -187738992]$ \(y^2=x^3+37044x-187738992\) 3.4.0.a.1, 9.12.0.b.1, 12.8.0-3.a.1.3, 24.16.0-24.d.1.5, 36.24.0-9.b.1.4, $\ldots$ $[ ]$
28224.fz2 28224.fz \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 84, 20272]$ \(y^2=x^3+84x+20272\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 42.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ $[ ]$
106722.o2 106722.o \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $4.458244024$ $[1, -1, 0, 159, -52739]$ \(y^2+xy=x^3-x^2+159x-52739\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(125, 1319)]$
106722.dm2 106722.dm \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 7782, 18073908]$ \(y^2+xy=x^3-x^2+7782x+18073908\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 33.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ $[ ]$
106722.ek2 106722.ek \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $5.338911094$ $[1, -1, 1, 70036, -488065553]$ \(y^2+xy+y=x^3-x^2+70036x-488065553\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 33.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ $[(1459, 51407)]$
106722.hh2 106722.hh \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 1429, 1422523]$ \(y^2+xy+y=x^3-x^2+1429x+1422523\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[ ]$
149058.r2 149058.r \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $7.958401295$ $[1, -1, 0, 10869, -29839419]$ \(y^2+xy=x^3-x^2+10869x-29839419\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 39.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ $[(36765/11, 1397631/11)]$
149058.dy2 149058.dy \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 222, 86932]$ \(y^2+xy=x^3-x^2+222x+86932\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[ ]$
149058.eq2 149058.eq \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.094492190$ $[1, -1, 1, 1996, -2349161]$ \(y^2+xy+y=x^3-x^2+1996x-2349161\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(283, 4421)]$
149058.hx2 149058.hx \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 97819, 805566493]$ \(y^2+xy+y=x^3-x^2+97819x+805566493\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 39.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ $[ ]$
176400.dz2 176400.dz \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 231525, -2933421750]$ \(y^2=x^3+231525x-2933421750\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 60.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ $[ ]$
176400.ec2 176400.ec \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.810299044$ $[0, 0, 0, 4725, 8552250]$ \(y^2=x^3+4725x+8552250\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(1509, 58752)]$
176400.qg2 176400.qg \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 25725, 108645250]$ \(y^2=x^3+25725x+108645250\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 60.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ $[ ]$
176400.qu2 176400.qu \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $7.599157821$ $[0, 0, 0, 525, -316750]$ \(y^2=x^3+525x-316750\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(5791/5, 437214/5)]$
254898.h2 254898.h \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 3414, -5253004]$ \(y^2+xy=x^3-x^2+3414x-5253004\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[ ]$
254898.dj2 254898.dj \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $16.18321399$ $[1, -1, 0, 167277, 1801445813]$ \(y^2+xy=x^3-x^2+167277x+1801445813\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 51.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ $[(840029581/356, 24317260970825/356)]$
254898.es2 254898.es \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 18586, -66726411]$ \(y^2+xy+y=x^3-x^2+18586x-66726411\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 51.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ $[ ]$
254898.ie2 254898.ie \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $0.866067621$ $[1, -1, 1, 379, 194429]$ \(y^2+xy+y=x^3-x^2+379x+194429\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(81, 826)]$
318402.f2 318402.f \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.353031188$ $[1, -1, 0, 474, -271692]$ \(y^2+xy=x^3-x^2+474x-271692\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(81, 501)]$
318402.cg2 318402.cg \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 23217, 93143917]$ \(y^2+xy=x^3-x^2+23217x+93143917\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 57.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ $[ ]$
318402.cx2 318402.cx \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.410580274$ $[1, -1, 1, 208951, -2515094711]$ \(y^2+xy+y=x^3-x^2+208951x-2515094711\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 57.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ $[(24439, 3808604)]$
318402.er2 318402.er \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 4264, 7331419]$ \(y^2+xy+y=x^3-x^2+4264x+7331419\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[ ]$
466578.h2 466578.h \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $2.525714539$ $[1, -1, 0, 6249, 13005341]$ \(y^2+xy=x^3-x^2+6249x+13005341\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(-137/2, 28703/2)]$
466578.cp2 466578.cp \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 306192, -4461444352]$ \(y^2+xy=x^3-x^2+306192x-4461444352\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 69.8.0-3.a.1.1, $\ldots$ $[ ]$
466578.do2 466578.do \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $1.756664747$ $[1, -1, 1, 34021, 165227339]$ \(y^2+xy+y=x^3-x^2+34021x+165227339\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 69.8.0-3.a.1.2, $\ldots$ $[(-477, 6586)]$
466578.gb2 466578.gb \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 694, -481911]$ \(y^2+xy+y=x^3-x^2+694x-481911\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[ ]$
705600.kb2 705600.kb \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 18900, -68418000]$ \(y^2=x^3+18900x-68418000\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[ ]$
705600.kj2 705600.kj \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.133331715$ $[0, 0, 0, 2100, -2534000]$ \(y^2=x^3+2100x-2534000\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(786, 22016)]$
705600.lc2 705600.lc \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $5.390663496$ $[0, 0, 0, 102900, 869162000]$ \(y^2=x^3+102900x+869162000\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 60.8.0-3.a.1.3, 63.36.0.i.1, $\ldots$ $[(1666, 75264), (91826/5, 28173824/5)]$
705600.lk2 705600.lk \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $27.10509535$ $[0, 0, 0, 926100, 23467374000]$ \(y^2=x^3+926100x+23467374000\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 30.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ $[(6089557191636/5411, 15027397890629833584/5411)]$
705600.brm2 705600.brm \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $10.21962889$ $[0, 0, 0, 18900, 68418000]$ \(y^2=x^3+18900x+68418000\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[(105141/11, 36229761/11)]$
705600.bru2 705600.bru \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 2100, 2534000]$ \(y^2=x^3+2100x+2534000\) 3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ $[ ]$
Next   displayed columns for results