| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 882.a2 |
882a2 |
882.a |
882a |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.4 |
3B.1.2 |
$504$ |
$144$ |
$2$ |
$0.548686226$ |
$1$ |
|
$4$ |
$3024$ |
$1.320040$ |
$189/512$ |
$1.32659$ |
$5.77212$ |
$[1, -1, 0, 579, 366533]$ |
\(y^2+xy=x^3-x^2+579x+366533\) |
3.8.0-3.a.1.1, 9.24.0-9.b.1.1, 24.16.0-24.d.1.7, 63.72.0-63.i.1.3, 72.48.0.?, $\ldots$ |
$[(37, 643)]$ |
$1$ |
| 882.e2 |
882b2 |
882.e |
882b |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$432$ |
$0.347085$ |
$189/512$ |
$1.32659$ |
$4.05063$ |
$[1, -1, 0, 12, -1072]$ |
\(y^2+xy=x^3-x^2+12x-1072\) |
3.4.0.a.1, 9.12.0.b.1, 21.8.0-3.a.1.2, 24.8.0.d.1, 63.72.0-63.i.1.2, $\ldots$ |
$[ ]$ |
$1$ |
| 882.h2 |
882g1 |
882.h |
882g |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$0.071245209$ |
$1$ |
|
$12$ |
$144$ |
$-0.202221$ |
$189/512$ |
$1.32659$ |
$3.07872$ |
$[1, -1, 1, 1, 39]$ |
\(y^2+xy+y=x^3-x^2+x+39\) |
3.4.0.a.1, 9.12.0.b.1, 21.8.0-3.a.1.1, 24.8.0.d.1, 63.72.0-63.i.1.1, $\ldots$ |
$[(-1, 6)]$ |
$1$ |
| 882.j2 |
882f1 |
882.j |
882f |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.24.0.2 |
3B.1.1 |
$504$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$2$ |
$1008$ |
$0.770734$ |
$189/512$ |
$1.32659$ |
$4.80021$ |
$[1, -1, 1, 64, -13597]$ |
\(y^2+xy+y=x^3-x^2+64x-13597\) |
3.8.0-3.a.1.2, 9.24.0-9.b.1.2, 24.16.0-24.d.1.8, 63.72.0-63.i.1.4, 72.48.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 7056.e2 |
7056be2 |
7056.e |
7056be |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$72576$ |
$2.013187$ |
$189/512$ |
$1.32659$ |
$5.35628$ |
$[0, 0, 0, 9261, -23467374]$ |
\(y^2=x^3+9261x-23467374\) |
3.4.0.a.1, 9.12.0.b.1, 12.8.0-3.a.1.2, 24.16.0-24.d.1.4, 36.24.0-9.b.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 7056.h2 |
7056bj1 |
7056.h |
7056bj |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$0.630718420$ |
$1$ |
|
$4$ |
$3456$ |
$0.490926$ |
$189/512$ |
$1.32659$ |
$3.29491$ |
$[0, 0, 0, 21, -2534]$ |
\(y^2=x^3+21x-2534\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(53, 384)]$ |
$1$ |
| 7056.bx2 |
7056bi2 |
7056.bx |
7056bi |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1.883139121$ |
$1$ |
|
$2$ |
$10368$ |
$1.040232$ |
$189/512$ |
$1.32659$ |
$4.03875$ |
$[0, 0, 0, 189, 68418]$ |
\(y^2=x^3+189x+68418\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(-33, 162)]$ |
$1$ |
| 7056.by2 |
7056bd1 |
7056.by |
7056bd |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$24192$ |
$1.463881$ |
$189/512$ |
$1.32659$ |
$4.61244$ |
$[0, 0, 0, 1029, 869162]$ |
\(y^2=x^3+1029x+869162\) |
3.4.0.a.1, 9.12.0.b.1, 12.8.0-3.a.1.1, 24.16.0-24.d.1.3, 36.24.0-9.b.1.2, $\ldots$ |
$[ ]$ |
$1$ |
| 22050.l2 |
22050b1 |
22050.l |
22050b |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$7.566869598$ |
$1$ |
|
$2$ |
$108864$ |
$1.575453$ |
$189/512$ |
$1.32659$ |
$4.22081$ |
$[1, -1, 0, 1608, -1697984]$ |
\(y^2+xy=x^3-x^2+1608x-1697984\) |
3.4.0.a.1, 9.12.0.b.1, 15.8.0-3.a.1.2, 24.8.0.d.1, 45.24.0-9.b.1.1, $\ldots$ |
$[(3275, 185771)]$ |
$1$ |
| 22050.p2 |
22050h1 |
22050.p |
22050h |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$15552$ |
$0.602498$ |
$189/512$ |
$1.32659$ |
$3.05339$ |
$[1, -1, 0, 33, 4941]$ |
\(y^2+xy=x^3-x^2+33x+4941\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 22050.fa2 |
22050cy2 |
22050.fa |
22050cy |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 5^{6} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$326592$ |
$2.124760$ |
$189/512$ |
$1.32659$ |
$4.87990$ |
$[1, -1, 1, 14470, 45831097]$ |
\(y^2+xy+y=x^3-x^2+14470x+45831097\) |
3.4.0.a.1, 9.12.0.b.1, 15.8.0-3.a.1.1, 24.8.0.d.1, 45.24.0-9.b.1.2, $\ldots$ |
$[ ]$ |
$1$ |
| 22050.fb2 |
22050de2 |
22050.fb |
22050de |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$1.334446267$ |
$1$ |
|
$4$ |
$46656$ |
$1.151804$ |
$189/512$ |
$1.32659$ |
$3.71248$ |
$[1, -1, 1, 295, -133703]$ |
\(y^2+xy+y=x^3-x^2+295x-133703\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(55, 188)]$ |
$1$ |
| 28224.p2 |
28224dd1 |
28224.p |
28224dd |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$193536$ |
$1.810455$ |
$189/512$ |
$1.32659$ |
$4.39431$ |
$[0, 0, 0, 4116, 6953296]$ |
\(y^2=x^3+4116x+6953296\) |
3.4.0.a.1, 9.12.0.b.1, 12.8.0-3.a.1.4, 24.16.0-24.d.1.6, 36.24.0-9.b.1.3, $\ldots$ |
$[ ]$ |
$1$ |
| 28224.r2 |
28224s2 |
28224.r |
28224s |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$82944$ |
$1.386806$ |
$189/512$ |
$1.32659$ |
$3.89823$ |
$[0, 0, 0, 756, -547344]$ |
\(y^2=x^3+756x-547344\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 42.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ |
$[ ]$ |
$1$ |
| 28224.v2 |
28224f1 |
28224.v |
28224f |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{3} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1.979995524$ |
$1$ |
|
$2$ |
$193536$ |
$1.810455$ |
$189/512$ |
$1.32659$ |
$4.39431$ |
$[0, 0, 0, 4116, -6953296]$ |
\(y^2=x^3+4116x-6953296\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.b.1, 18.24.0-9.b.1.2, 24.16.0-24.d.1.1, $\ldots$ |
$[(196, 1176)]$ |
$1$ |
| 28224.x2 |
28224ec2 |
28224.x |
28224ec |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1.272993569$ |
$1$ |
|
$4$ |
$82944$ |
$1.386806$ |
$189/512$ |
$1.32659$ |
$3.89823$ |
$[0, 0, 0, 756, 547344]$ |
\(y^2=x^3+756x+547344\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(-62, 512)]$ |
$1$ |
| 28224.fr2 |
28224e2 |
28224.fr |
28224e |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1.530944124$ |
$1$ |
|
$4$ |
$580608$ |
$2.359760$ |
$189/512$ |
$1.32659$ |
$5.03753$ |
$[0, 0, 0, 37044, 187738992]$ |
\(y^2=x^3+37044x+187738992\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 9.12.0.b.1, 18.24.0-9.b.1.1, 24.16.0-24.d.1.2, $\ldots$ |
$[(78, 13824)]$ |
$1$ |
| 28224.ft2 |
28224dz1 |
28224.ft |
28224dz |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$3.484051687$ |
$1$ |
|
$2$ |
$27648$ |
$0.837500$ |
$189/512$ |
$1.32659$ |
$3.25501$ |
$[0, 0, 0, 84, -20272]$ |
\(y^2=x^3+84x-20272\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(37, 183)]$ |
$1$ |
| 28224.fx2 |
28224da2 |
28224.fx |
28224da |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1$ |
$4$ |
$2$ |
$0$ |
$580608$ |
$2.359760$ |
$189/512$ |
$1.32659$ |
$5.03753$ |
$[0, 0, 0, 37044, -187738992]$ |
\(y^2=x^3+37044x-187738992\) |
3.4.0.a.1, 9.12.0.b.1, 12.8.0-3.a.1.3, 24.16.0-24.d.1.5, 36.24.0-9.b.1.4, $\ldots$ |
$[ ]$ |
$1$ |
| 28224.fz2 |
28224r1 |
28224.fz |
28224r |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{3} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$0.837500$ |
$189/512$ |
$1.32659$ |
$3.25501$ |
$[0, 0, 0, 84, 20272]$ |
\(y^2=x^3+84x+20272\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 42.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ |
$[ ]$ |
$1$ |
| 106722.o2 |
106722bf1 |
106722.o |
106722bf |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{2} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$5544$ |
$144$ |
$2$ |
$4.458244024$ |
$1$ |
|
$2$ |
$194400$ |
$0.996727$ |
$189/512$ |
$1.32659$ |
$3.04611$ |
$[1, -1, 0, 159, -52739]$ |
\(y^2+xy=x^3-x^2+159x-52739\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(125, 1319)]$ |
$1$ |
| 106722.dm2 |
106722k1 |
106722.dm |
106722k |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{8} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$5544$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$1360800$ |
$1.969683$ |
$189/512$ |
$1.32659$ |
$4.05453$ |
$[1, -1, 0, 7782, 18073908]$ |
\(y^2+xy=x^3-x^2+7782x+18073908\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 33.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ |
$[ ]$ |
$1$ |
| 106722.ek2 |
106722ej2 |
106722.ek |
106722ej |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{8} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$5544$ |
$144$ |
$2$ |
$5.338911094$ |
$1$ |
|
$2$ |
$4082400$ |
$2.518990$ |
$189/512$ |
$1.32659$ |
$4.62386$ |
$[1, -1, 1, 70036, -488065553]$ |
\(y^2+xy+y=x^3-x^2+70036x-488065553\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 33.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ |
$[(1459, 51407)]$ |
$1$ |
| 106722.hh2 |
106722fe2 |
106722.hh |
106722fe |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{2} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$5544$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$583200$ |
$1.546034$ |
$189/512$ |
$1.32659$ |
$3.61544$ |
$[1, -1, 1, 1429, 1422523]$ |
\(y^2+xy+y=x^3-x^2+1429x+1422523\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 149058.r2 |
149058he1 |
149058.r |
149058he |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{8} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$6552$ |
$144$ |
$2$ |
$7.958401295$ |
$1$ |
|
$0$ |
$2322432$ |
$2.053207$ |
$189/512$ |
$1.32659$ |
$4.02496$ |
$[1, -1, 0, 10869, -29839419]$ |
\(y^2+xy=x^3-x^2+10869x-29839419\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 39.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ |
$[(36765/11, 1397631/11)]$ |
$1$ |
| 149058.dy2 |
149058in1 |
149058.dy |
149058in |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{2} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$6552$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$331776$ |
$1.080254$ |
$189/512$ |
$1.32659$ |
$3.04482$ |
$[1, -1, 0, 222, 86932]$ |
\(y^2+xy=x^3-x^2+222x+86932\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 149058.eq2 |
149058ct2 |
149058.eq |
149058ct |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$6552$ |
$144$ |
$2$ |
$1.094492190$ |
$1$ |
|
$4$ |
$995328$ |
$1.629560$ |
$189/512$ |
$1.32659$ |
$3.59818$ |
$[1, -1, 1, 1996, -2349161]$ |
\(y^2+xy+y=x^3-x^2+1996x-2349161\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(283, 4421)]$ |
$1$ |
| 149058.hx2 |
149058ed2 |
149058.hx |
149058ed |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{8} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$6552$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$6967296$ |
$2.602516$ |
$189/512$ |
$1.32659$ |
$4.57832$ |
$[1, -1, 1, 97819, 805566493]$ |
\(y^2+xy+y=x^3-x^2+97819x+805566493\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 39.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ |
$[ ]$ |
$1$ |
| 176400.dz2 |
176400kw2 |
176400.dz |
176400kw |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{9} \cdot 5^{6} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$7838208$ |
$2.817905$ |
$189/512$ |
$1.32659$ |
$4.72844$ |
$[0, 0, 0, 231525, -2933421750]$ |
\(y^2=x^3+231525x-2933421750\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 60.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ |
$[ ]$ |
$1$ |
| 176400.ec2 |
176400jp2 |
176400.ec |
176400jp |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{9} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$2.810299044$ |
$1$ |
|
$2$ |
$1119744$ |
$1.844952$ |
$189/512$ |
$1.32659$ |
$3.76197$ |
$[0, 0, 0, 4725, 8552250]$ |
\(y^2=x^3+4725x+8552250\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(1509, 58752)]$ |
$1$ |
| 176400.qg2 |
176400lf1 |
176400.qg |
176400lf |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{3} \cdot 5^{6} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2612736$ |
$2.268600$ |
$189/512$ |
$1.32659$ |
$4.18280$ |
$[0, 0, 0, 25725, 108645250]$ |
\(y^2=x^3+25725x+108645250\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 60.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ |
$[ ]$ |
$1$ |
| 176400.qu2 |
176400kp1 |
176400.qu |
176400kp |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{3} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$7.599157821$ |
$1$ |
|
$0$ |
$373248$ |
$1.295645$ |
$189/512$ |
$1.32659$ |
$3.21633$ |
$[0, 0, 0, 525, -316750]$ |
\(y^2=x^3+525x-316750\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(5791/5, 437214/5)]$ |
$1$ |
| 254898.h2 |
254898h2 |
254898.h |
254898h |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{2} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$8568$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$1990656$ |
$1.763693$ |
$189/512$ |
$1.32659$ |
$3.57240$ |
$[1, -1, 0, 3414, -5253004]$ |
\(y^2+xy=x^3-x^2+3414x-5253004\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 254898.dj2 |
254898dj2 |
254898.dj |
254898dj |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{8} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$8568$ |
$144$ |
$2$ |
$16.18321399$ |
$1$ |
|
$0$ |
$13934592$ |
$2.736649$ |
$189/512$ |
$1.32659$ |
$4.51029$ |
$[1, -1, 0, 167277, 1801445813]$ |
\(y^2+xy=x^3-x^2+167277x+1801445813\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 51.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ |
$[(840029581/356, 24317260970825/356)]$ |
$1$ |
| 254898.es2 |
254898es1 |
254898.es |
254898es |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{8} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$8568$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$4644864$ |
$2.187340$ |
$189/512$ |
$1.32659$ |
$3.98078$ |
$[1, -1, 1, 18586, -66726411]$ |
\(y^2+xy+y=x^3-x^2+18586x-66726411\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 51.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ |
$[ ]$ |
$1$ |
| 254898.ie2 |
254898ie1 |
254898.ie |
254898ie |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$8568$ |
$144$ |
$2$ |
$0.866067621$ |
$1$ |
|
$4$ |
$663552$ |
$1.214386$ |
$189/512$ |
$1.32659$ |
$3.04289$ |
$[1, -1, 1, 379, 194429]$ |
\(y^2+xy+y=x^3-x^2+379x+194429\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(81, 826)]$ |
$1$ |
| 318402.f2 |
318402f1 |
318402.f |
318402f |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{2} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$9576$ |
$144$ |
$2$ |
$1.353031188$ |
$1$ |
|
$4$ |
$1026432$ |
$1.269999$ |
$189/512$ |
$1.32659$ |
$3.04214$ |
$[1, -1, 0, 474, -271692]$ |
\(y^2+xy=x^3-x^2+474x-271692\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(81, 501)]$ |
$1$ |
| 318402.cg2 |
318402cg1 |
318402.cg |
318402cg |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{8} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$9576$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$7185024$ |
$2.242954$ |
$189/512$ |
$1.32659$ |
$3.96356$ |
$[1, -1, 0, 23217, 93143917]$ |
\(y^2+xy=x^3-x^2+23217x+93143917\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 57.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ |
$[ ]$ |
$1$ |
| 318402.cx2 |
318402cx2 |
318402.cx |
318402cx |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{8} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$9576$ |
$144$ |
$2$ |
$1.410580274$ |
$1$ |
|
$4$ |
$21555072$ |
$2.792259$ |
$189/512$ |
$1.32659$ |
$4.48378$ |
$[1, -1, 1, 208951, -2515094711]$ |
\(y^2+xy+y=x^3-x^2+208951x-2515094711\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 57.8.0-3.a.1.2, 63.36.0.i.1, $\ldots$ |
$[(24439, 3808604)]$ |
$1$ |
| 318402.er2 |
318402er2 |
318402.er |
318402er |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{2} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$9576$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$3079296$ |
$1.819305$ |
$189/512$ |
$1.32659$ |
$3.56235$ |
$[1, -1, 1, 4264, 7331419]$ |
\(y^2+xy+y=x^3-x^2+4264x+7331419\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 466578.h2 |
466578h2 |
466578.h |
466578h |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 23^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{2} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$11592$ |
$144$ |
$2$ |
$2.525714539$ |
$1$ |
|
$0$ |
$5132160$ |
$1.914833$ |
$189/512$ |
$1.32659$ |
$3.54589$ |
$[1, -1, 0, 6249, 13005341]$ |
\(y^2+xy=x^3-x^2+6249x+13005341\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(-137/2, 28703/2)]$ |
$1$ |
| 466578.cp2 |
466578cp2 |
466578.cp |
466578cp |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 23^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{8} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$11592$ |
$144$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$35925120$ |
$2.887787$ |
$189/512$ |
$1.32659$ |
$4.44034$ |
$[1, -1, 0, 306192, -4461444352]$ |
\(y^2+xy=x^3-x^2+306192x-4461444352\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 69.8.0-3.a.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 466578.do2 |
466578do1 |
466578.do |
466578do |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 23^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{8} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$11592$ |
$144$ |
$2$ |
$1.756664747$ |
$1$ |
|
$4$ |
$11975040$ |
$2.338482$ |
$189/512$ |
$1.32659$ |
$3.93536$ |
$[1, -1, 1, 34021, 165227339]$ |
\(y^2+xy+y=x^3-x^2+34021x+165227339\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 69.8.0-3.a.1.2, $\ldots$ |
$[(-477, 6586)]$ |
$1$ |
| 466578.gb2 |
466578gb1 |
466578.gb |
466578gb |
$2$ |
$3$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 23^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{2} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$11592$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$1710720$ |
$1.365526$ |
$189/512$ |
$1.32659$ |
$3.04090$ |
$[1, -1, 1, 694, -481911]$ |
\(y^2+xy+y=x^3-x^2+694x-481911\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 705600.kb2 |
- |
705600.kb |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{9} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$8957952$ |
$2.191525$ |
$189/512$ |
$1.32659$ |
$3.68353$ |
$[0, 0, 0, 18900, -68418000]$ |
\(y^2=x^3+18900x-68418000\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
|
| 705600.kj2 |
- |
705600.kj |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{3} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$3.133331715$ |
$1$ |
|
$2$ |
$2985984$ |
$1.642220$ |
$189/512$ |
$1.32659$ |
$3.19406$ |
$[0, 0, 0, 2100, -2534000]$ |
\(y^2=x^3+2100x-2534000\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(786, 22016)]$ |
|
| 705600.lc2 |
- |
705600.lc |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{3} \cdot 5^{6} \cdot 7^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$5.390663496$ |
$1$ |
|
$8$ |
$20901888$ |
$2.615173$ |
$189/512$ |
$1.32659$ |
$4.06104$ |
$[0, 0, 0, 102900, 869162000]$ |
\(y^2=x^3+102900x+869162000\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 60.8.0-3.a.1.3, 63.36.0.i.1, $\ldots$ |
$[(1666, 75264), (91826/5, 28173824/5)]$ |
|
| 705600.lk2 |
- |
705600.lk |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{9} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$27.10509535$ |
$1$ |
|
$0$ |
$62705664$ |
$3.164478$ |
$189/512$ |
$1.32659$ |
$4.55052$ |
$[0, 0, 0, 926100, 23467374000]$ |
\(y^2=x^3+926100x+23467374000\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 30.8.0-3.a.1.1, 63.36.0.i.1, $\ldots$ |
$[(6089557191636/5411, 15027397890629833584/5411)]$ |
|
| 705600.brm2 |
- |
705600.brm |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{9} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$10.21962889$ |
$1$ |
|
$0$ |
$8957952$ |
$2.191525$ |
$189/512$ |
$1.32659$ |
$3.68353$ |
$[0, 0, 0, 18900, 68418000]$ |
\(y^2=x^3+18900x+68418000\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[(105141/11, 36229761/11)]$ |
|
| 705600.bru2 |
- |
705600.bru |
- |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{27} \cdot 3^{3} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2985984$ |
$1.642220$ |
$189/512$ |
$1.32659$ |
$3.19406$ |
$[0, 0, 0, 2100, 2534000]$ |
\(y^2=x^3+2100x+2534000\) |
3.4.0.a.1, 9.12.0.b.1, 24.8.0.d.1, 63.36.0.i.1, 72.24.0.?, $\ldots$ |
$[ ]$ |
|