# Properties

 Label 22050b Number of curves $2$ Conductor $22050$ CM no Rank $1$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("22050.l1")

sage: E.isogeny_class()

## Elliptic curves in class 22050b

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
22050.l2 22050b1 [1, -1, 0, 1608, -1697984] [] 108864 $$\Gamma_0(N)$$-optimal
22050.l1 22050b2 [1, -1, 0, -1027392, -400606984] [] 326592

## Rank

sage: E.rank()

The elliptic curves in class 22050b have rank $$1$$.

## Modular form 22050.2.a.l

sage: E.q_eigenform(10)

$$q - q^{2} + q^{4} - q^{8} - 3q^{11} - 2q^{13} + q^{16} - 6q^{17} + 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 