Learn more

Refine search


Results (23 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
3570.t2 3570.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -252620, 48757805]$ \(y^2+xy+y=x^3+x^2-252620x+48757805\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.bb.2.4, 60.24.0-60.h.1.3, 120.96.0.?, $\ldots$ $[ ]$
10710.a2 10710.a \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2273580, -1318734320]$ \(y^2+xy=x^3-x^2-2273580x-1318734320\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 12.12.0-4.c.1.2, 20.12.0-4.c.1.1, $\ldots$ $[ ]$
17850.ba2 17850.ba \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $5.063589033$ $[1, 0, 1, -6315501, 6107356648]$ \(y^2+xy+y=x^3-6315501x+6107356648\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 12.12.0-4.c.1.1, 20.12.0-4.c.1.2, $\ldots$ $[(1486, 1367)]$
24990.ca2 24990.ca \( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -12378381, -16761062319]$ \(y^2+xy=x^3-12378381x-16761062319\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 28.12.0-4.c.1.2, 56.48.0-8.bb.2.6, $\ldots$ $[ ]$
28560.ds2 28560.ds \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -4041920, -3128583372]$ \(y^2=x^3+x^2-4041920x-3128583372\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.bb.2.3, 60.24.0-60.h.1.1, 120.96.0.?, $\ldots$ $[ ]$
53550.du2 53550.du \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $0.838446074$ $[1, -1, 1, -56839505, -164898629503]$ \(y^2+xy+y=x^3-x^2-56839505x-164898629503\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.48.0-8.bb.2.6, 60.24.0-60.h.1.1, 120.96.0.?, $\ldots$ $[(-4325, 6208)]$
60690.bv2 60690.bv \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -73007186, 240058147140]$ \(y^2+xy=x^3-73007186x+240058147140\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 16.48.0-8.bb.2.6, 60.12.0.h.1, $\ldots$ $[ ]$
74970.bd2 74970.bd \( 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.043411131$ $[1, -1, 0, -111405429, 452548682613]$ \(y^2+xy=x^3-x^2-111405429x+452548682613\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 60.12.0.h.1, 84.12.0.?, $\ldots$ $[(5889, 23295)]$
85680.db2 85680.db \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -36377283, 84435373762]$ \(y^2=x^3-36377283x+84435373762\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 12.12.0-4.c.1.1, 20.12.0-4.c.1.2, $\ldots$ $[ ]$
114240.cp2 114240.cp \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -16167681, -25012499295]$ \(y^2=x^3-x^2-16167681x-25012499295\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.2.2, 60.12.0.h.1, 120.96.0.?, $\ldots$ $[ ]$
114240.fq2 114240.fq \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $1.754945497$ $[0, 1, 0, -16167681, 25012499295]$ \(y^2=x^3+x^2-16167681x+25012499295\) 2.3.0.a.1, 4.6.0.c.1, 8.48.0-8.bb.2.1, 60.12.0.h.1, 120.96.0.?, $\ldots$ $[(5099, 274176)]$
124950.ce2 124950.ce \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.301762771$ $[1, 1, 0, -309459525, -2095132789875]$ \(y^2+xy=x^3+x^2-309459525x-2095132789875\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 60.12.0.h.1, 84.12.0.?, $\ldots$ $[(-10070, 15235)]$
142800.b2 142800.b \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -101048008, -390870825488]$ \(y^2=x^3-x^2-101048008x-390870825488\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 12.12.0-4.c.1.2, 20.12.0-4.c.1.1, $\ldots$ $[ ]$
182070.bw2 182070.bw \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -657064674, -6481569972780]$ \(y^2+xy=x^3-x^2-657064674x-6481569972780\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 48.48.0-8.bb.2.4, 60.12.0.h.1, $\ldots$ $[ ]$
199920.c2 199920.c \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $7.123502252$ $[0, -1, 0, -198054096, 1072707988416]$ \(y^2=x^3-x^2-198054096x+1072707988416\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 28.12.0-4.c.1.1, 56.48.0-8.bb.2.5, $\ldots$ $[(8378, 37414)]$
303450.b2 303450.b \( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) $1$ $\Z/2\Z$ $2.848801213$ $[1, 1, 0, -1825179650, 30007268392500]$ \(y^2+xy=x^3+x^2-1825179650x+30007268392500\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 48.48.0-8.bb.2.7, 60.12.0.h.1, $\ldots$ $[(24940, 16430)]$
342720.ld2 342720.ld \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $20.46886712$ $[0, 0, 0, -145509132, -675482990096]$ \(y^2=x^3-145509132x-675482990096\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 24.48.0-8.bb.2.2, 40.48.0-8.bb.2.1, $\ldots$ $[(-9295690831/1160, 10070690648553/1160)]$
342720.md2 342720.md \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \) $1$ $\Z/2\Z$ $9.441015628$ $[0, 0, 0, -145509132, 675482990096]$ \(y^2=x^3-145509132x+675482990096\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 24.48.0-8.bb.2.1, 40.48.0-8.bb.2.2, $\ldots$ $[(68540, 17682896)]$
374850.jf2 374850.jf \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -2785135730, 56565800190897]$ \(y^2+xy+y=x^3-x^2-2785135730x+56565800190897\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 28.12.0-4.c.1.1, 56.48.0-8.bb.2.4, $\ldots$ $[ ]$
424830.fi2 424830.fi \( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -3577352115, -82343521821135]$ \(y^2+xy+y=x^3+x^2-3577352115x-82343521821135\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 60.12.0.h.1, 112.48.0.?, $\ldots$ $[ ]$
428400.gi2 428400.gi \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, -909432075, 10554421720250]$ \(y^2=x^3-909432075x+10554421720250\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.48.0-8.bb.2.5, 60.24.0-60.h.1.3, 120.96.0.?, $\ldots$ $[ ]$
431970.y2 431970.y \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 17 \) $2$ $\Z/2\Z$ $20.28374186$ $[1, 1, 0, -30567022, -65049473804]$ \(y^2+xy=x^3+x^2-30567022x-65049473804\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 44.12.0-4.c.1.2, 60.12.0.h.1, $\ldots$ $[(-3195, 4804), (-3169, -673)]$
485520.bg2 485520.bg \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1168114976, -15363721416960]$ \(y^2=x^3-x^2-1168114976x-15363721416960\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 16.48.0-8.bb.2.5, 60.12.0.h.1, $\ldots$ $[ ]$
  displayed columns for results