Properties

Label 3570t
Number of curves $6$
Conductor $3570$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("t1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3570t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3570.t5 3570t1 \([1, 1, 1, 3060, 64557]\) \(3168685387909439/3563732336640\) \(-3563732336640\) \([4]\) \(9216\) \(1.0949\) \(\Gamma_0(N)\)-optimal
3570.t4 3570t2 \([1, 1, 1, -17420, 588845]\) \(584614687782041281/184812061593600\) \(184812061593600\) \([2, 4]\) \(18432\) \(1.4415\)  
3570.t3 3570t3 \([1, 1, 1, -109900, -13616083]\) \(146796951366228945601/5397929064360000\) \(5397929064360000\) \([2, 2]\) \(36864\) \(1.7881\)  
3570.t2 3570t4 \([1, 1, 1, -252620, 48757805]\) \(1782900110862842086081/328139630024640\) \(328139630024640\) \([4]\) \(36864\) \(1.7881\)  
3570.t1 3570t5 \([1, 1, 1, -1742580, -886120275]\) \(585196747116290735872321/836876053125000\) \(836876053125000\) \([2]\) \(73728\) \(2.1347\)  
3570.t6 3570t6 \([1, 1, 1, 43100, -48377683]\) \(8854313460877886399/1016927675429790600\) \(-1016927675429790600\) \([2]\) \(73728\) \(2.1347\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3570t have rank \(0\).

Complex multiplication

The elliptic curves in class 3570t do not have complex multiplication.

Modular form 3570.2.a.t

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} - q^{7} + q^{8} + q^{9} + q^{10} + 4q^{11} - q^{12} + 6q^{13} - q^{14} - q^{15} + q^{16} + q^{17} + q^{18} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.