Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
46410.ck8 |
46410cn5 |
46410.ck |
46410cn |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13^{16} \cdot 17^{2} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
16.96.0.25 |
2B |
$742560$ |
$768$ |
$13$ |
$1$ |
$4$ |
$2$ |
$2$ |
$12582912$ |
$3.472786$ |
$14651516183052242700771495839/8480668142378708755560900$ |
$1.07097$ |
$6.03562$ |
$[1, 0, 0, 50978410, -2026455000]$ |
\(y^2+xy=x^3+50978410x-2026455000\) |
2.3.0.a.1, 4.24.0-4.d.1.1, 8.48.0-8.q.1.2, 16.96.0-16.j.1.2, 120.96.0.?, $\ldots$ |
$[]$ |
139230.j8 |
139230dy6 |
139230.j |
139230dy |
$8$ |
$16$ |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{2} \cdot 3^{8} \cdot 5^{2} \cdot 7^{2} \cdot 13^{16} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.60 |
2B |
$742560$ |
$768$ |
$13$ |
$1.472952509$ |
$1$ |
|
$4$ |
$100663296$ |
$4.022095$ |
$14651516183052242700771495839/8480668142378708755560900$ |
$1.07097$ |
$6.03231$ |
$[1, -1, 0, 458805690, 54714285000]$ |
\(y^2+xy=x^3-x^2+458805690x+54714285000\) |
2.3.0.a.1, 4.12.0.d.1, 8.24.0.q.1, 12.24.0-4.d.1.1, 16.48.0.j.1, $\ldots$ |
$[(44370, 10358640)]$ |
232050.bf8 |
232050bf5 |
232050.bf |
232050bf |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{2} \cdot 3^{2} \cdot 5^{8} \cdot 7^{2} \cdot 13^{16} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.60 |
2B |
$742560$ |
$768$ |
$13$ |
$1$ |
$1$ |
|
$0$ |
$301989888$ |
$4.277504$ |
$14651516183052242700771495839/8480668142378708755560900$ |
$1.07097$ |
$6.03098$ |
$[1, 1, 0, 1274460250, -253306875000]$ |
\(y^2+xy=x^3+x^2+1274460250x-253306875000\) |
2.3.0.a.1, 4.12.0.d.1, 8.24.0.q.1, 16.48.0.j.1, 20.24.0-4.d.1.1, $\ldots$ |
$[]$ |
324870.dd8 |
324870dd6 |
324870.dd |
324870dd |
$8$ |
$16$ |
\( 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
\( - 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{8} \cdot 13^{16} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.60 |
2B |
$742560$ |
$768$ |
$13$ |
$28.04291033$ |
$1$ |
|
$0$ |
$603979776$ |
$4.445740$ |
$14651516183052242700771495839/8480668142378708755560900$ |
$1.07097$ |
$6.03016$ |
$[1, 1, 1, 2497942089, 697572007089]$ |
\(y^2+xy+y=x^3+x^2+2497942089x+697572007089\) |
2.3.0.a.1, 4.12.0.d.1, 8.24.0.q.1, 16.48.0.j.1, 28.24.0-4.d.1.1, $\ldots$ |
$[(1031345031099/16985, 15231248043631580548/16985)]$ |
371280.cy8 |
371280cy6 |
371280.cy |
371280cy |
$8$ |
$16$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{14} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13^{16} \cdot 17^{2} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.96.0.28 |
2B |
$742560$ |
$768$ |
$13$ |
$1$ |
$4$ |
$2$ |
$3$ |
$301989888$ |
$4.165932$ |
$14651516183052242700771495839/8480668142378708755560900$ |
$1.07097$ |
$5.70556$ |
$[0, -1, 0, 815654560, 129693120000]$ |
\(y^2=x^3-x^2+815654560x+129693120000\) |
2.3.0.a.1, 4.24.0-4.d.1.1, 8.48.0-8.q.1.2, 16.96.0-16.j.1.9, 120.96.0.?, $\ldots$ |
$[]$ |