| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 30345.s1 |
30345d1 |
30345.s |
30345d |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 17^{2} \) |
\( - 3^{15} \cdot 5 \cdot 7^{3} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$3414960$ |
$3.239780$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$6.62743$ |
$[1, 1, 0, -166083248, -823898033163]$ |
\(y^2+xy=x^3+x^2-166083248x-823898033163\) |
420.2.0.? |
$[ ]$ |
| 30345.be1 |
30345bi1 |
30345.be |
30345bi |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7 \cdot 17^{2} \) |
\( - 3^{15} \cdot 5 \cdot 7^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$200880$ |
$1.823174$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$4.98027$ |
$[1, 0, 1, -574683, -167731349]$ |
\(y^2+xy+y=x^3-574683x-167731349\) |
420.2.0.? |
$[ ]$ |
| 91035.n1 |
91035x1 |
91035.n |
91035x |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 7 \cdot 17^{2} \) |
\( - 3^{21} \cdot 5 \cdot 7^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$0.928967431$ |
$1$ |
|
$4$ |
$1607040$ |
$2.372478$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$5.07838$ |
$[1, -1, 1, -5172143, 4528746416]$ |
\(y^2+xy+y=x^3-x^2-5172143x+4528746416\) |
420.2.0.? |
$[(-42, 68911)]$ |
| 91035.s1 |
91035bl1 |
91035.s |
91035bl |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 7 \cdot 17^{2} \) |
\( - 3^{21} \cdot 5 \cdot 7^{3} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27319680$ |
$3.789085$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$6.56706$ |
$[1, -1, 1, -1494749237, 22243752146166]$ |
\(y^2+xy+y=x^3-x^2-1494749237x+22243752146166\) |
420.2.0.? |
$[ ]$ |
| 151725.r1 |
151725bh1 |
151725.r |
151725bh |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 3^{15} \cdot 5^{7} \cdot 7^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$20.81409267$ |
$1$ |
|
$0$ |
$4821120$ |
$2.627892$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$5.11784$ |
$[1, 1, 1, -14367063, -20966418594]$ |
\(y^2+xy+y=x^3+x^2-14367063x-20966418594\) |
420.2.0.? |
$[(7448774475/581, 630538365398467/581)]$ |
| 151725.bd1 |
151725q1 |
151725.bd |
151725q |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 3^{15} \cdot 5^{7} \cdot 7^{3} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$81959040$ |
$4.044502$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$6.54278$ |
$[1, 0, 0, -4152081213, -102978949982958]$ |
\(y^2+xy=x^3-4152081213x-102978949982958\) |
420.2.0.? |
$[ ]$ |
| 212415.bw1 |
212415cp1 |
212415.bw |
212415cp |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) |
\( - 3^{15} \cdot 5 \cdot 7^{9} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9642240$ |
$2.796127$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$5.14204$ |
$[1, 1, 0, -28159443, 57503693178]$ |
\(y^2+xy=x^3+x^2-28159443x+57503693178\) |
420.2.0.? |
$[ ]$ |
| 212415.cn1 |
212415bt1 |
212415.cn |
212415bt |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 17^{2} \) |
\( - 3^{15} \cdot 5 \cdot 7^{9} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1.222436846$ |
$1$ |
|
$2$ |
$163918080$ |
$4.212738$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$6.52789$ |
$[1, 0, 1, -8138079178, 282572611137401]$ |
\(y^2+xy+y=x^3-8138079178x+282572611137401\) |
420.2.0.? |
$[(55801, 1459004)]$ |
| 455175.du1 |
455175du1 |
455175.du |
455175du |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 3^{21} \cdot 5^{7} \cdot 7^{3} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$38568960$ |
$3.177197$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$5.19223$ |
$[1, -1, 0, -129303567, 565963998466]$ |
\(y^2+xy=x^3-x^2-129303567x+565963998466\) |
420.2.0.? |
$[ ]$ |
| 455175.ew1 |
455175ew1 |
455175.ew |
455175ew |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 3^{21} \cdot 5^{7} \cdot 7^{3} \cdot 17^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$655672320$ |
$4.593803$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$6.49701$ |
$[1, -1, 0, -37368730917, 2780431649539866]$ |
\(y^2+xy=x^3-x^2-37368730917x+2780431649539866\) |
420.2.0.? |
$[ ]$ |
| 485520.co1 |
485520co1 |
485520.co |
485520co |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2} \) |
\( - 2^{12} \cdot 3^{15} \cdot 5 \cdot 7^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$10.24892899$ |
$1$ |
|
$0$ |
$12856320$ |
$2.516319$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$4.56093$ |
$[0, -1, 0, -9194920, 10734806320]$ |
\(y^2=x^3-x^2-9194920x+10734806320\) |
420.2.0.? |
$[(1094274/25, 905018/25)]$ |
| 485520.gj1 |
485520gj1 |
485520.gj |
485520gj |
$1$ |
$1$ |
\( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2} \) |
\( - 2^{12} \cdot 3^{15} \cdot 5 \cdot 7^{3} \cdot 17^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1.587192431$ |
$1$ |
|
$4$ |
$218557440$ |
$3.932926$ |
$-72628961394279272329/24608375505$ |
$1.07573$ |
$5.85928$ |
$[0, 1, 0, -2657331976, 52724159458484]$ |
\(y^2=x^3+x^2-2657331976x+52724159458484\) |
420.2.0.? |
$[(29660, 30618)]$ |