Properties

Label 30345d
Number of curves 1
Conductor 30345
CM no
Rank 0

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("30345.s1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 30345d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
30345.s1 30345d1 [1, 1, 0, -166083248, -823898033163] [] 3414960 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 30345d1 has rank \(0\).

Modular form 30345.2.a.s

sage: E.q_eigenform(10)
 
\( q + q^{2} - q^{3} - q^{4} - q^{5} - q^{6} - q^{7} - 3q^{8} + q^{9} - q^{10} - q^{11} + q^{12} - q^{13} - q^{14} + q^{15} - q^{16} + q^{18} + O(q^{20}) \)