Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
162.a1 |
162a1 |
162.a |
162a |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{2} \cdot 3^{6} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.8.0.1 |
3B.1.1 |
$12$ |
$128$ |
$1$ |
$0.305934883$ |
$1$ |
|
$14$ |
$12$ |
$-0.597807$ |
$-35937/4$ |
$1.00607$ |
$3.39200$ |
$[1, -1, 0, -6, 8]$ |
\(y^2+xy=x^3-x^2-6x+8\) |
3.8.0-3.a.1.2, 4.8.0.b.1, 12.128.1-12.b.2.3 |
$[(4, 4)]$ |
162.d1 |
162d2 |
162.d |
162d |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \) |
\( - 2^{2} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.16.0.2, 3.8.0.2 |
3B.1.2 |
$12$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$36$ |
$-0.048500$ |
$-35937/4$ |
$1.00607$ |
$4.68763$ |
$[1, -1, 1, -56, -161]$ |
\(y^2+xy+y=x^3-x^2-56x-161\) |
3.8.0-3.a.1.1, 4.16.0-4.b.1.1, 12.128.1-12.b.2.4 |
$[]$ |
1296.c1 |
1296j1 |
1296.c |
1296j |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{14} \cdot 3^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$12$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$288$ |
$0.095341$ |
$-35937/4$ |
$1.00607$ |
$3.56840$ |
$[0, 0, 0, -99, -414]$ |
\(y^2=x^3-99x-414\) |
3.4.0.a.1, 4.8.0.b.1, 6.8.0-3.a.1.1, 12.128.1-12.b.2.1 |
$[]$ |
1296.l1 |
1296h2 |
1296.l |
1296h |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \) |
\( - 2^{14} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.16.0.2, 3.4.0.1 |
3B |
$12$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.644647$ |
$-35937/4$ |
$1.00607$ |
$4.48812$ |
$[0, 0, 0, -891, 11178]$ |
\(y^2=x^3-891x+11178\) |
3.4.0.a.1, 4.16.0-4.b.1.1, 6.8.0-3.a.1.2, 12.128.1-12.b.2.2 |
$[]$ |
4050.r1 |
4050g2 |
4050.r |
4050g |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$60$ |
$128$ |
$1$ |
$3.926134397$ |
$1$ |
|
$2$ |
$3888$ |
$0.756219$ |
$-35937/4$ |
$1.00607$ |
$4.03365$ |
$[1, -1, 0, -1392, -21484]$ |
\(y^2+xy=x^3-x^2-1392x-21484\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 15.8.0-3.a.1.1, 20.16.0-4.b.1.1, $\ldots$ |
$[(50, 154)]$ |
4050.bh1 |
4050v1 |
4050.bh |
4050v |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 5^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$60$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1296$ |
$0.206913$ |
$-35937/4$ |
$1.00607$ |
$3.24009$ |
$[1, -1, 1, -155, 847]$ |
\(y^2+xy+y=x^3-x^2-155x+847\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 15.8.0-3.a.1.2, 60.128.1-12.b.2.1 |
$[]$ |
5184.c1 |
5184m2 |
5184.c |
5184m |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{20} \cdot 3^{12} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.16.0.3, 3.4.0.1 |
3B |
$24$ |
$128$ |
$1$ |
$2.229461342$ |
$1$ |
|
$4$ |
$6912$ |
$0.991220$ |
$-35937/4$ |
$1.00607$ |
$4.24693$ |
$[0, 0, 0, -3564, -89424]$ |
\(y^2=x^3-3564x-89424\) |
3.4.0.a.1, 4.8.0.b.1, 8.16.0-4.b.1.1, 12.64.1.b.2, 24.128.1-12.b.2.2 |
$[(70, 64)]$ |
5184.h1 |
5184bc2 |
5184.h |
5184bc |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{20} \cdot 3^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.16.0.3, 3.4.0.1 |
3B |
$24$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6912$ |
$0.991220$ |
$-35937/4$ |
$1.00607$ |
$4.24693$ |
$[0, 0, 0, -3564, 89424]$ |
\(y^2=x^3-3564x+89424\) |
3.4.0.a.1, 4.8.0.b.1, 8.16.0-4.b.1.1, 12.64.1.b.2, 24.128.1-12.b.2.4 |
$[]$ |
5184.y1 |
5184j1 |
5184.y |
5184j |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{20} \cdot 3^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$24$ |
$128$ |
$1$ |
$0.670613516$ |
$1$ |
|
$4$ |
$2304$ |
$0.441914$ |
$-35937/4$ |
$1.00607$ |
$3.47628$ |
$[0, 0, 0, -396, 3312]$ |
\(y^2=x^3-396x+3312\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 24.128.1-12.b.2.1 |
$[(-2, 64)]$ |
5184.bd1 |
5184z1 |
5184.bd |
5184z |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \) |
\( - 2^{20} \cdot 3^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$24$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2304$ |
$0.441914$ |
$-35937/4$ |
$1.00607$ |
$3.47628$ |
$[0, 0, 0, -396, -3312]$ |
\(y^2=x^3-396x-3312\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 24.128.1-12.b.2.3 |
$[]$ |
7938.n1 |
7938g1 |
7938.n |
7938g |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$84$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.375149$ |
$-35937/4$ |
$1.00607$ |
$3.22210$ |
$[1, -1, 0, -303, -2143]$ |
\(y^2+xy=x^3-x^2-303x-2143\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 21.8.0-3.a.1.1, 84.128.1.? |
$[]$ |
7938.s1 |
7938ba2 |
7938.s |
7938ba |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$84$ |
$128$ |
$1$ |
$1.373693536$ |
$1$ |
|
$2$ |
$10368$ |
$0.924455$ |
$-35937/4$ |
$1.00607$ |
$3.95619$ |
$[1, -1, 1, -2729, 60589]$ |
\(y^2+xy+y=x^3-x^2-2729x+60589\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 21.8.0-3.a.1.2, 28.16.0-4.b.1.1, $\ldots$ |
$[(23, 86)]$ |
19602.p1 |
19602l2 |
19602.p |
19602l |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 11^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$132$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$51840$ |
$1.150448$ |
$-35937/4$ |
$1.00607$ |
$3.86873$ |
$[1, -1, 0, -6738, 234152]$ |
\(y^2+xy=x^3-x^2-6738x+234152\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 33.8.0-3.a.1.1, 44.16.0-4.b.1.1, $\ldots$ |
$[]$ |
19602.s1 |
19602bd1 |
19602.s |
19602bd |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 11^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$132$ |
$128$ |
$1$ |
$1.396223025$ |
$1$ |
|
$2$ |
$17280$ |
$0.601141$ |
$-35937/4$ |
$1.00607$ |
$3.20179$ |
$[1, -1, 1, -749, -8423]$ |
\(y^2+xy+y=x^3-x^2-749x-8423\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 33.8.0-3.a.1.2, 132.128.1.? |
$[(47, 218)]$ |
27378.c1 |
27378i2 |
27378.c |
27378i |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$156$ |
$128$ |
$1$ |
$8.048748571$ |
$1$ |
|
$0$ |
$84240$ |
$1.233974$ |
$-35937/4$ |
$1.00607$ |
$3.84032$ |
$[1, -1, 0, -9411, -381367]$ |
\(y^2+xy=x^3-x^2-9411x-381367\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 39.8.0-3.a.1.2, 52.16.0-4.b.1.1, $\ldots$ |
$[(3916/3, 232213/3)]$ |
27378.v1 |
27378p1 |
27378.v |
27378p |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 13^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$156$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$28080$ |
$0.684669$ |
$-35937/4$ |
$1.00607$ |
$3.19519$ |
$[1, -1, 1, -1046, 14473]$ |
\(y^2+xy+y=x^3-x^2-1046x+14473\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 39.8.0-3.a.1.1, 156.128.1.? |
$[]$ |
32400.f1 |
32400bz2 |
32400.f |
32400bz |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{14} \cdot 3^{12} \cdot 5^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$60$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$93312$ |
$1.449366$ |
$-35937/4$ |
$1.00607$ |
$4.02691$ |
$[0, 0, 0, -22275, 1397250]$ |
\(y^2=x^3-22275x+1397250\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 20.16.0-4.b.1.1, 30.8.0-3.a.1.2, $\ldots$ |
$[]$ |
32400.g1 |
32400by1 |
32400.g |
32400by |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{14} \cdot 3^{6} \cdot 5^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$60$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$31104$ |
$0.900060$ |
$-35937/4$ |
$1.00607$ |
$3.39224$ |
$[0, 0, 0, -2475, -51750]$ |
\(y^2=x^3-2475x-51750\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 30.8.0-3.a.1.1, 60.128.1-12.b.2.2 |
$[]$ |
46818.e1 |
46818c1 |
46818.e |
46818c |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$204$ |
$128$ |
$1$ |
$3.059218834$ |
$1$ |
|
$2$ |
$60480$ |
$0.818800$ |
$-35937/4$ |
$1.00607$ |
$3.18545$ |
$[1, -1, 0, -1788, 32228]$ |
\(y^2+xy=x^3-x^2-1788x+32228\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 51.8.0-3.a.1.2, 204.128.1.? |
$[(26, 40)]$ |
46818.j1 |
46818k2 |
46818.j |
46818k |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 17^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$204$ |
$128$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$181440$ |
$1.368107$ |
$-35937/4$ |
$1.00607$ |
$3.79840$ |
$[1, -1, 1, -16094, -854063]$ |
\(y^2+xy+y=x^3-x^2-16094x-854063\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 51.8.0-3.a.1.1, 68.16.0-4.b.1.1, $\ldots$ |
$[]$ |
58482.n1 |
58482j2 |
58482.n |
58482j |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 19^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$228$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$248832$ |
$1.423719$ |
$-35937/4$ |
$1.00607$ |
$3.78222$ |
$[1, -1, 0, -20103, 1202993]$ |
\(y^2+xy=x^3-x^2-20103x+1202993\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 57.8.0-3.a.1.2, 76.16.0.?, $\ldots$ |
$[]$ |
58482.p1 |
58482y1 |
58482.p |
58482y |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 19^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$228$ |
$128$ |
$1$ |
$3.864189407$ |
$1$ |
|
$0$ |
$82944$ |
$0.874413$ |
$-35937/4$ |
$1.00607$ |
$3.18169$ |
$[1, -1, 1, -2234, -43811]$ |
\(y^2+xy+y=x^3-x^2-2234x-43811\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 57.8.0-3.a.1.1, 228.128.1.? |
$[(1033/3, 28039/3)]$ |
63504.i1 |
63504cd2 |
63504.i |
63504cd |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{14} \cdot 3^{12} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$84$ |
$128$ |
$1$ |
$5.969871154$ |
$1$ |
|
$0$ |
$248832$ |
$1.617601$ |
$-35937/4$ |
$1.00607$ |
$3.96442$ |
$[0, 0, 0, -43659, -3834054]$ |
\(y^2=x^3-43659x-3834054\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 28.16.0-4.b.1.1, 42.8.0-3.a.1.1, $\ldots$ |
$[(4375/3, 255878/3)]$ |
63504.cp1 |
63504by1 |
63504.cp |
63504by |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{14} \cdot 3^{6} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$84$ |
$128$ |
$1$ |
$0.841866818$ |
$1$ |
|
$4$ |
$82944$ |
$1.068296$ |
$-35937/4$ |
$1.00607$ |
$3.36837$ |
$[0, 0, 0, -4851, 142002]$ |
\(y^2=x^3-4851x+142002\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 42.8.0-3.a.1.2, 84.128.1.? |
$[(63, 294)]$ |
85698.l1 |
85698h1 |
85698.l |
85698h |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 23^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$276$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$152064$ |
$0.969940$ |
$-35937/4$ |
$1.00607$ |
$3.17558$ |
$[1, -1, 0, -3273, -77887]$ |
\(y^2+xy=x^3-x^2-3273x-77887\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 69.8.0-3.a.1.2, 276.128.1.? |
$[]$ |
85698.o1 |
85698u2 |
85698.o |
85698u |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 23^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$276$ |
$128$ |
$1$ |
$4.408462771$ |
$1$ |
|
$0$ |
$456192$ |
$1.519247$ |
$-35937/4$ |
$1.00607$ |
$3.75590$ |
$[1, -1, 1, -29459, 2132407]$ |
\(y^2+xy+y=x^3-x^2-29459x+2132407\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 69.8.0-3.a.1.1, 92.16.0.?, $\ldots$ |
$[(2515/3, 103072/3)]$ |
129600.r1 |
129600gu2 |
129600.r |
129600gu |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{20} \cdot 3^{12} \cdot 5^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$120$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$746496$ |
$1.795938$ |
$-35937/4$ |
$1.00607$ |
$3.90598$ |
$[0, 0, 0, -89100, 11178000]$ |
\(y^2=x^3-89100x+11178000\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 40.16.0-4.b.1.1, 120.128.1.? |
$[]$ |
129600.s1 |
129600gt1 |
129600.s |
129600gt |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{20} \cdot 3^{6} \cdot 5^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$120$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$248832$ |
$1.246634$ |
$-35937/4$ |
$1.00607$ |
$3.34605$ |
$[0, 0, 0, -9900, -414000]$ |
\(y^2=x^3-9900x-414000\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 120.128.1.? |
$[]$ |
129600.ir1 |
129600cc2 |
129600.ir |
129600cc |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{20} \cdot 3^{12} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$120$ |
$128$ |
$1$ |
$16.12056419$ |
$1$ |
|
$0$ |
$746496$ |
$1.795938$ |
$-35937/4$ |
$1.00607$ |
$3.90598$ |
$[0, 0, 0, -89100, -11178000]$ |
\(y^2=x^3-89100x-11178000\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 40.16.0-4.b.1.1, 120.128.1.? |
$[(113339566/21, 1206624182336/21)]$ |
129600.is1 |
129600cb1 |
129600.is |
129600cb |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \) |
\( - 2^{20} \cdot 3^{6} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$120$ |
$128$ |
$1$ |
$1.093331452$ |
$1$ |
|
$4$ |
$248832$ |
$1.246634$ |
$-35937/4$ |
$1.00607$ |
$3.34605$ |
$[0, 0, 0, -9900, 414000]$ |
\(y^2=x^3-9900x+414000\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 120.128.1.? |
$[(54, 192)]$ |
136242.t1 |
136242bq2 |
136242.t |
136242bq |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 29^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$348$ |
$128$ |
$1$ |
$16.28976195$ |
$1$ |
|
$0$ |
$825552$ |
$1.635147$ |
$-35937/4$ |
$1.00607$ |
$3.72626$ |
$[1, -1, 0, -46833, -4247983]$ |
\(y^2+xy=x^3-x^2-46833x-4247983\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 87.8.0.?, 116.16.0.?, $\ldots$ |
$[(16762216/15, 68500985369/15)]$ |
136242.z1 |
136242i1 |
136242.z |
136242i |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 29^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$348$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$275184$ |
$1.085842$ |
$-35937/4$ |
$1.00607$ |
$3.16869$ |
$[1, -1, 1, -5204, 159067]$ |
\(y^2+xy+y=x^3-x^2-5204x+159067\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 87.8.0.?, 348.128.1.? |
$[]$ |
155682.a1 |
155682q1 |
155682.a |
155682q |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 31^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 31^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$372$ |
$128$ |
$1$ |
$6.026229211$ |
$1$ |
|
$8$ |
$362880$ |
$1.119186$ |
$-35937/4$ |
$1.00607$ |
$3.16681$ |
$[1, -1, 0, -5946, -191224]$ |
\(y^2+xy=x^3-x^2-5946x-191224\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 93.8.0.?, 372.128.1.? |
$[(101, 430), (1870/3, 71192/3)]$ |
155682.z1 |
155682m2 |
155682.z |
155682m |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 31^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$372$ |
$128$ |
$1$ |
$6.670781274$ |
$1$ |
|
$0$ |
$1088640$ |
$1.668493$ |
$-35937/4$ |
$1.00607$ |
$3.71816$ |
$[1, -1, 1, -53516, 5216563]$ |
\(y^2+xy+y=x^3-x^2-53516x+5216563\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 93.8.0.?, 124.16.0.?, $\ldots$ |
$[(-409/10, 2332931/10)]$ |
156816.g1 |
156816m1 |
156816.g |
156816m |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 11^{2} \) |
\( - 2^{14} \cdot 3^{6} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$132$ |
$128$ |
$1$ |
$1.270460440$ |
$1$ |
|
$4$ |
$414720$ |
$1.294289$ |
$-35937/4$ |
$1.00607$ |
$3.34054$ |
$[0, 0, 0, -11979, 551034]$ |
\(y^2=x^3-11979x+551034\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 66.8.0-3.a.1.1, 132.128.1.? |
$[(55, 242)]$ |
156816.db1 |
156816by2 |
156816.db |
156816by |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 11^{2} \) |
\( - 2^{14} \cdot 3^{12} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$132$ |
$128$ |
$1$ |
$14.56668594$ |
$1$ |
|
$0$ |
$1244160$ |
$1.843594$ |
$-35937/4$ |
$1.00607$ |
$3.89155$ |
$[0, 0, 0, -107811, -14877918]$ |
\(y^2=x^3-107811x-14877918\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 44.16.0-4.b.1.1, 66.8.0-3.a.1.2, $\ldots$ |
$[(43619191/125, 285983374886/125)]$ |
198450.cd1 |
198450hg2 |
198450.cd |
198450hg |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 5^{6} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$420$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1119744$ |
$1.729174$ |
$-35937/4$ |
$1.00607$ |
$3.70387$ |
$[1, -1, 0, -68217, 7505441]$ |
\(y^2+xy=x^3-x^2-68217x+7505441\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 105.8.0.?, 140.16.0.?, $\ldots$ |
$[]$ |
198450.gl1 |
198450cy1 |
198450.gl |
198450cy |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 5^{6} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$420$ |
$128$ |
$1$ |
$3.991360980$ |
$1$ |
|
$2$ |
$373248$ |
$1.179867$ |
$-35937/4$ |
$1.00607$ |
$3.16349$ |
$[1, -1, 1, -7580, -275453]$ |
\(y^2+xy+y=x^3-x^2-7580x-275453\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 105.8.0.?, 420.128.1.? |
$[(485, 10243)]$ |
219024.d1 |
219024m2 |
219024.d |
219024m |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 13^{2} \) |
\( - 2^{14} \cdot 3^{12} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$156$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2021760$ |
$1.927122$ |
$-35937/4$ |
$1.00607$ |
$3.86732$ |
$[0, 0, 0, -150579, 24558066]$ |
\(y^2=x^3-150579x+24558066\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 52.16.0-4.b.1.1, 78.8.0.?, $\ldots$ |
$[]$ |
219024.cs1 |
219024br1 |
219024.cs |
219024br |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{4} \cdot 13^{2} \) |
\( - 2^{14} \cdot 3^{6} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$156$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$673920$ |
$1.377815$ |
$-35937/4$ |
$1.00607$ |
$3.33128$ |
$[0, 0, 0, -16731, -909558]$ |
\(y^2=x^3-16731x-909558\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 78.8.0.?, 156.128.1.? |
$[]$ |
221778.b1 |
221778p2 |
221778.b |
221778p |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 37^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$444$ |
$128$ |
$1$ |
$11.22377909$ |
$1$ |
|
$0$ |
$1870128$ |
$1.756958$ |
$-35937/4$ |
$1.00607$ |
$3.69751$ |
$[1, -1, 0, -76236, -8827804]$ |
\(y^2+xy=x^3-x^2-76236x-8827804\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 111.8.0.?, 148.16.0.?, $\ldots$ |
$[(92800/9, 26923706/9)]$ |
221778.w1 |
221778k1 |
221778.w |
221778k |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 37^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 37^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$444$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$623376$ |
$1.207653$ |
$-35937/4$ |
$1.00607$ |
$3.16202$ |
$[1, -1, 1, -8471, 329779]$ |
\(y^2+xy+y=x^3-x^2-8471x+329779\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 111.8.0.?, 444.128.1.? |
$[]$ |
254016.z1 |
254016z1 |
254016.z |
254016z |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{6} \cdot 7^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$168$ |
$128$ |
$1$ |
$2.465629329$ |
$1$ |
|
$14$ |
$663552$ |
$1.414869$ |
$-35937/4$ |
$1.00607$ |
$3.32734$ |
$[0, 0, 0, -19404, -1136016]$ |
\(y^2=x^3-19404x-1136016\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 168.128.1.? |
$[(462, 9408), (168, 588)]$ |
254016.ba1 |
254016ba1 |
254016.ba |
254016ba |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{6} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$168$ |
$128$ |
$1$ |
$2.199297455$ |
$1$ |
|
$2$ |
$663552$ |
$1.414869$ |
$-35937/4$ |
$1.00607$ |
$3.32734$ |
$[0, 0, 0, -19404, 1136016]$ |
\(y^2=x^3-19404x+1136016\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 168.128.1.? |
$[(28, 784)]$ |
254016.hh1 |
254016hh2 |
254016.hh |
254016hh |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{12} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$168$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1990656$ |
$1.964176$ |
$-35937/4$ |
$1.00607$ |
$3.85700$ |
$[0, 0, 0, -174636, 30672432]$ |
\(y^2=x^3-174636x+30672432\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 56.16.0-4.b.1.1, 168.128.1.? |
$[]$ |
254016.hi1 |
254016hi2 |
254016.hi |
254016hi |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{4} \cdot 7^{2} \) |
\( - 2^{20} \cdot 3^{12} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$168$ |
$128$ |
$1$ |
$23.68556821$ |
$1$ |
|
$0$ |
$1990656$ |
$1.964176$ |
$-35937/4$ |
$1.00607$ |
$3.85700$ |
$[0, 0, 0, -174636, -30672432]$ |
\(y^2=x^3-174636x-30672432\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 56.16.0-4.b.1.1, 168.128.1.? |
$[(232169970256/12545, 106728028557641596/12545)]$ |
272322.c1 |
272322c1 |
272322.c |
272322c |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 41^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$492$ |
$128$ |
$1$ |
$1.079557023$ |
$1$ |
|
$4$ |
$829440$ |
$1.258980$ |
$-35937/4$ |
$1.00607$ |
$3.15936$ |
$[1, -1, 0, -10401, 448433]$ |
\(y^2+xy=x^3-x^2-10401x+448433\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 123.8.0.?, 492.128.1.? |
$[(113, 784)]$ |
272322.be1 |
272322be2 |
272322.be |
272322be |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 41^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 41^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$492$ |
$128$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$2488320$ |
$1.808285$ |
$-35937/4$ |
$1.00607$ |
$3.68607$ |
$[1, -1, 1, -93611, -12014081]$ |
\(y^2+xy+y=x^3-x^2-93611x-12014081\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 123.8.0.?, 164.16.0.?, $\ldots$ |
$[]$ |
299538.a1 |
299538a2 |
299538.a |
299538a |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 43^{2} \) |
\( - 2^{2} \cdot 3^{12} \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$516$ |
$128$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2830464$ |
$1.832100$ |
$-35937/4$ |
$1.00607$ |
$3.68089$ |
$[1, -1, 0, -102966, 13912136]$ |
\(y^2+xy=x^3-x^2-102966x+13912136\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 129.8.0.?, 172.16.0.?, $\ldots$ |
$[]$ |
299538.z1 |
299538z1 |
299538.z |
299538z |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 43^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.8.0.2, 3.4.0.1 |
3B |
$516$ |
$128$ |
$1$ |
$22.09271746$ |
$1$ |
|
$0$ |
$943488$ |
$1.282793$ |
$-35937/4$ |
$1.00607$ |
$3.15815$ |
$[1, -1, 1, -11441, -511451]$ |
\(y^2+xy+y=x^3-x^2-11441x-511451\) |
3.4.0.a.1, 4.8.0.b.1, 12.64.1.b.2, 129.8.0.?, 516.128.1.? |
$[(238325034919/3705, 115900565485779862/3705)]$ |