Show commands:
SageMath
E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 5184j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
5184.y1 | 5184j1 | \([0, 0, 0, -396, 3312]\) | \(-35937/4\) | \(-764411904\) | \([]\) | \(2304\) | \(0.44191\) | \(\Gamma_0(N)\)-optimal |
5184.y2 | 5184j2 | \([0, 0, 0, 2484, -4752]\) | \(109503/64\) | \(-990677827584\) | \([]\) | \(6912\) | \(0.99122\) |
Rank
sage: E.rank()
The elliptic curves in class 5184j have rank \(1\).
Complex multiplication
The elliptic curves in class 5184j do not have complex multiplication.Modular form 5184.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.