Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
175.a1 |
175a2 |
175.a |
175a |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \) |
\( - 5^{3} \cdot 7^{5} \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.1 |
5B.1.1 |
$70$ |
$48$ |
$1$ |
$0.664629997$ |
$1$ |
|
$14$ |
$40$ |
$0.054193$ |
$-2887553024/16807$ |
$0.98803$ |
$5.15452$ |
$[0, -1, 1, -148, 748]$ |
\(y^2+y=x^3-x^2-148x+748\) |
5.24.0-5.a.1.2, 70.48.1-70.d.1.4 |
$[(7, 2)]$ |
175.c1 |
175c2 |
175.c |
175c |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \) |
\( - 5^{9} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.2 |
5B.1.4 |
$70$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$200$ |
$0.858912$ |
$-2887553024/16807$ |
$0.98803$ |
$7.02423$ |
$[0, 1, 1, -3708, 86119]$ |
\(y^2+y=x^3+x^2-3708x+86119\) |
5.24.0-5.a.1.1, 70.48.1-70.d.1.2 |
$[]$ |
1225.a1 |
1225j2 |
1225.a |
1225j |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \) |
\( - 5^{3} \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$70$ |
$48$ |
$1$ |
$0.776960684$ |
$1$ |
|
$4$ |
$1920$ |
$1.027147$ |
$-2887553024/16807$ |
$0.98803$ |
$5.38589$ |
$[0, 1, 1, -7268, -242126]$ |
\(y^2+y=x^3+x^2-7268x-242126\) |
5.12.0.a.1, 10.24.0-5.a.1.2, 35.24.0-5.a.1.2, 70.48.1-70.d.1.3 |
$[(338, 6002)]$ |
1225.i1 |
1225i2 |
1225.i |
1225i |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \) |
\( - 5^{9} \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$70$ |
$48$ |
$1$ |
$8.564033026$ |
$1$ |
|
$0$ |
$9600$ |
$1.831867$ |
$-2887553024/16807$ |
$0.98803$ |
$6.74394$ |
$[0, -1, 1, -181708, -29902307]$ |
\(y^2+y=x^3-x^2-181708x-29902307\) |
5.12.0.a.1, 10.24.0-5.a.1.1, 35.24.0-5.a.1.1, 70.48.1-70.d.1.1 |
$[(409093/2, 261653871/2)]$ |
1575.a1 |
1575i2 |
1575.a |
1575i |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{9} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$210$ |
$48$ |
$1$ |
$4.245874128$ |
$1$ |
|
$2$ |
$6000$ |
$1.408218$ |
$-2887553024/16807$ |
$0.98803$ |
$5.82318$ |
$[0, 0, 1, -33375, -2358594]$ |
\(y^2+y=x^3-33375x-2358594\) |
5.12.0.a.1, 15.24.0-5.a.1.2, 70.24.1.d.1, 210.48.1.? |
$[(675, 16812)]$ |
1575.k1 |
1575k2 |
1575.k |
1575k |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 3^{6} \cdot 5^{3} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1200$ |
$0.603499$ |
$-2887553024/16807$ |
$0.98803$ |
$4.51149$ |
$[0, 0, 1, -1335, -18869]$ |
\(y^2+y=x^3-1335x-18869\) |
5.12.0.a.1, 15.24.0-5.a.1.1, 70.24.1.d.1, 210.48.1.? |
$[]$ |
2800.l1 |
2800be2 |
2800.l |
2800be |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{9} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$8000$ |
$1.552059$ |
$-2887553024/16807$ |
$0.98803$ |
$5.61853$ |
$[0, -1, 0, -59333, -5570963]$ |
\(y^2=x^3-x^2-59333x-5570963\) |
5.12.0.a.1, 20.24.0-5.a.1.1, 70.24.1.d.1, 140.48.1.? |
$[]$ |
2800.w1 |
2800y2 |
2800.w |
2800y |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 5^{3} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$140$ |
$48$ |
$1$ |
$5.422775418$ |
$1$ |
|
$2$ |
$1600$ |
$0.747340$ |
$-2887553024/16807$ |
$0.98803$ |
$4.40193$ |
$[0, 1, 0, -2373, -45517]$ |
\(y^2=x^3+x^2-2373x-45517\) |
5.12.0.a.1, 20.24.0-5.a.1.2, 70.24.1.d.1, 140.48.1.? |
$[(478, 10405)]$ |
11025.d1 |
11025bq2 |
11025.d |
11025bq |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{6} \cdot 5^{9} \cdot 7^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$288000$ |
$2.381172$ |
$-2887553024/16807$ |
$0.98803$ |
$5.86014$ |
$[0, 0, 1, -1635375, 808997656]$ |
\(y^2+y=x^3-1635375x+808997656\) |
5.12.0.a.1, 30.24.0-5.a.1.1, 70.24.1.d.1, 105.24.0.?, 210.48.1.? |
$[]$ |
11025.bq1 |
11025bo2 |
11025.bq |
11025bo |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 3^{6} \cdot 5^{3} \cdot 7^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$210$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$57600$ |
$1.576454$ |
$-2887553024/16807$ |
$0.98803$ |
$4.82268$ |
$[0, 0, 1, -65415, 6471981]$ |
\(y^2+y=x^3-65415x+6471981\) |
5.12.0.a.1, 30.24.0-5.a.1.2, 70.24.1.d.1, 105.24.0.?, 210.48.1.? |
$[]$ |
11200.t1 |
11200cy2 |
11200.t |
11200cy |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$280$ |
$48$ |
$1$ |
$3.216063885$ |
$1$ |
|
$2$ |
$3200$ |
$0.400766$ |
$-2887553024/16807$ |
$0.98803$ |
$3.30137$ |
$[0, -1, 0, -593, -5393]$ |
\(y^2=x^3-x^2-593x-5393\) |
5.12.0.a.1, 40.24.0-5.a.1.1, 70.24.1.d.1, 280.48.1.? |
$[(42, 205)]$ |
11200.ba1 |
11200bf2 |
11200.ba |
11200bf |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 5^{9} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$280$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$16000$ |
$1.205484$ |
$-2887553024/16807$ |
$0.98803$ |
$4.33708$ |
$[0, -1, 0, -14833, 703787]$ |
\(y^2=x^3-x^2-14833x+703787\) |
5.12.0.a.1, 40.24.0-5.a.1.4, 70.24.1.d.1, 280.48.1.? |
$[]$ |
11200.ci1 |
11200df2 |
11200.ci |
11200df |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 5^{9} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$280$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$16000$ |
$1.205484$ |
$-2887553024/16807$ |
$0.98803$ |
$4.33708$ |
$[0, 1, 0, -14833, -703787]$ |
\(y^2=x^3+x^2-14833x-703787\) |
5.12.0.a.1, 40.24.0-5.a.1.2, 70.24.1.d.1, 280.48.1.? |
$[]$ |
11200.cs1 |
11200bo2 |
11200.cs |
11200bo |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$280$ |
$48$ |
$1$ |
$0.296953258$ |
$1$ |
|
$2$ |
$3200$ |
$0.400766$ |
$-2887553024/16807$ |
$0.98803$ |
$3.30137$ |
$[0, 1, 0, -593, 5393]$ |
\(y^2=x^3+x^2-593x+5393\) |
5.12.0.a.1, 40.24.0-5.a.1.3, 70.24.1.d.1, 280.48.1.? |
$[(8, 35)]$ |
19600.bp1 |
19600dw2 |
19600.bp |
19600dw |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 5^{3} \cdot 7^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$76800$ |
$1.720295$ |
$-2887553024/16807$ |
$0.98803$ |
$4.71657$ |
$[0, -1, 0, -116293, 15379757]$ |
\(y^2=x^3-x^2-116293x+15379757\) |
5.12.0.a.1, 20.24.0-5.a.1.3, 70.24.1.d.1, 140.48.1.? |
$[]$ |
19600.cy1 |
19600ds2 |
19600.cy |
19600ds |
$2$ |
$5$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 5^{9} \cdot 7^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$384000$ |
$2.525013$ |
$-2887553024/16807$ |
$0.98803$ |
$5.69364$ |
$[0, 1, 0, -2907333, 1916654963]$ |
\(y^2=x^3+x^2-2907333x+1916654963\) |
5.12.0.a.1, 20.24.0-5.a.1.4, 70.24.1.d.1, 140.48.1.? |
$[]$ |
21175.d1 |
21175bn2 |
21175.d |
21175bn |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 11^{2} \) |
\( - 5^{9} \cdot 7^{5} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$770$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$270000$ |
$2.057858$ |
$-2887553024/16807$ |
$0.98803$ |
$5.08665$ |
$[0, 1, 1, -448708, -116419506]$ |
\(y^2+y=x^3+x^2-448708x-116419506\) |
5.12.0.a.1, 55.24.0-5.a.1.2, 70.24.1.d.1, 770.48.1.? |
$[]$ |
21175.bk1 |
21175be2 |
21175.bk |
21175be |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 11^{2} \) |
\( - 5^{3} \cdot 7^{5} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$770$ |
$48$ |
$1$ |
$19.18806903$ |
$1$ |
|
$0$ |
$54000$ |
$1.253139$ |
$-2887553024/16807$ |
$0.98803$ |
$4.11717$ |
$[0, -1, 1, -17948, -924177]$ |
\(y^2+y=x^3-x^2-17948x-924177\) |
5.12.0.a.1, 55.24.0-5.a.1.1, 70.24.1.d.1, 770.48.1.? |
$[(422253093/878, 8379533391489/878)]$ |
25200.v1 |
25200fd2 |
25200.v |
25200fd |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{3} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$420$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$48000$ |
$1.296646$ |
$-2887553024/16807$ |
$0.98803$ |
$4.09799$ |
$[0, 0, 0, -21360, 1207600]$ |
\(y^2=x^3-21360x+1207600\) |
5.12.0.a.1, 60.24.0-5.a.1.2, 70.24.1.d.1, 420.48.1.? |
$[]$ |
25200.dp1 |
25200fr2 |
25200.dp |
25200fr |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{9} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$420$ |
$48$ |
$1$ |
$1.546907228$ |
$1$ |
|
$2$ |
$240000$ |
$2.101364$ |
$-2887553024/16807$ |
$0.98803$ |
$5.05082$ |
$[0, 0, 0, -534000, 150950000]$ |
\(y^2=x^3-534000x+150950000\) |
5.12.0.a.1, 60.24.0-5.a.1.1, 70.24.1.d.1, 420.48.1.? |
$[(425, 875)]$ |
29575.f1 |
29575w2 |
29575.f |
29575w |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 5^{9} \cdot 7^{5} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$910$ |
$48$ |
$1$ |
$1.127617902$ |
$1$ |
|
$4$ |
$468000$ |
$2.141388$ |
$-2887553024/16807$ |
$0.98803$ |
$5.01893$ |
$[0, 1, 1, -626708, 191710744]$ |
\(y^2+y=x^3+x^2-626708x+191710744\) |
5.12.0.a.1, 65.24.0-5.a.1.2, 70.24.1.d.1, 910.48.1.? |
$[(533, 3062)]$ |
29575.t1 |
29575r2 |
29575.t |
29575r |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 5^{3} \cdot 7^{5} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$910$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$93600$ |
$1.336668$ |
$-2887553024/16807$ |
$0.98803$ |
$4.08091$ |
$[0, -1, 1, -25068, 1543713]$ |
\(y^2+y=x^3-x^2-25068x+1543713\) |
5.12.0.a.1, 65.24.0-5.a.1.1, 70.24.1.d.1, 910.48.1.? |
$[]$ |
50575.a1 |
50575bc2 |
50575.a |
50575bc |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 5^{3} \cdot 7^{5} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1190$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$176000$ |
$1.470800$ |
$-2887553024/16807$ |
$0.98803$ |
$4.02737$ |
$[0, 1, 1, -42868, 3419124]$ |
\(y^2+y=x^3+x^2-42868x+3419124\) |
5.12.0.a.1, 70.24.1.d.1, 85.24.0.?, 1190.48.1.? |
$[]$ |
50575.bi1 |
50575bh2 |
50575.bi |
50575bh |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 17^{2} \) |
\( - 5^{9} \cdot 7^{5} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1190$ |
$48$ |
$1$ |
$3.572445550$ |
$1$ |
|
$0$ |
$880000$ |
$2.275520$ |
$-2887553024/16807$ |
$0.98803$ |
$4.91892$ |
$[0, -1, 1, -1071708, 429533943]$ |
\(y^2+y=x^3-x^2-1071708x+429533943\) |
5.12.0.a.1, 70.24.1.d.1, 85.24.0.?, 1190.48.1.? |
$[(-507/2, 189871/2)]$ |
63175.d1 |
63175r2 |
63175.d |
63175r |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 19^{2} \) |
\( - 5^{9} \cdot 7^{5} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1330$ |
$48$ |
$1$ |
$7.041132945$ |
$1$ |
|
$0$ |
$1440000$ |
$2.331131$ |
$-2887553024/16807$ |
$0.98803$ |
$4.88031$ |
$[0, -1, 1, -1338708, -598723932]$ |
\(y^2+y=x^3-x^2-1338708x-598723932\) |
5.12.0.a.1, 70.24.1.d.1, 95.24.0.?, 1330.48.1.? |
$[(161857/11, 2007397/11)]$ |
63175.x1 |
63175y2 |
63175.x |
63175y |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 19^{2} \) |
\( - 5^{3} \cdot 7^{5} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1330$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$288000$ |
$1.526413$ |
$-2887553024/16807$ |
$0.98803$ |
$4.00669$ |
$[0, 1, 1, -53548, -4811211]$ |
\(y^2+y=x^3+x^2-53548x-4811211\) |
5.12.0.a.1, 70.24.1.d.1, 95.24.0.?, 1330.48.1.? |
$[]$ |
78400.df1 |
78400ko2 |
78400.df |
78400ko |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{9} \cdot 7^{11} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$280$ |
$48$ |
$1$ |
$3.429901073$ |
$1$ |
|
$4$ |
$768000$ |
$2.178440$ |
$-2887553024/16807$ |
$0.98803$ |
$4.62422$ |
$[0, -1, 0, -726833, 239945287]$ |
\(y^2=x^3-x^2-726833x+239945287\) |
5.12.0.a.1, 40.24.0-5.a.1.5, 70.24.1.d.1, 280.48.1.? |
$[(642, 6125), (5897/4, 300125/4)]$ |
78400.ee1 |
78400ew2 |
78400.ee |
78400ew |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$280$ |
$48$ |
$1$ |
$3.685141348$ |
$1$ |
|
$2$ |
$153600$ |
$1.373722$ |
$-2887553024/16807$ |
$0.98803$ |
$3.76734$ |
$[0, -1, 0, -29073, -1907933]$ |
\(y^2=x^3-x^2-29073x-1907933\) |
5.12.0.a.1, 40.24.0-5.a.1.8, 70.24.1.d.1, 280.48.1.? |
$[(3078, 170471)]$ |
78400.hi1 |
78400kj2 |
78400.hi |
78400kj |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{3} \cdot 7^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$280$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$153600$ |
$1.373722$ |
$-2887553024/16807$ |
$0.98803$ |
$3.76734$ |
$[0, 1, 0, -29073, 1907933]$ |
\(y^2=x^3+x^2-29073x+1907933\) |
5.12.0.a.1, 40.24.0-5.a.1.6, 70.24.1.d.1, 280.48.1.? |
$[]$ |
78400.ik1 |
78400ej2 |
78400.ik |
78400ej |
$2$ |
$5$ |
\( 2^{6} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{9} \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$280$ |
$48$ |
$1$ |
$23.63334592$ |
$1$ |
|
$0$ |
$768000$ |
$2.178440$ |
$-2887553024/16807$ |
$0.98803$ |
$4.62422$ |
$[0, 1, 0, -726833, -239945287]$ |
\(y^2=x^3+x^2-726833x-239945287\) |
5.12.0.a.1, 40.24.0-5.a.1.7, 70.24.1.d.1, 280.48.1.? |
$[(150569132288/10531, 41746574155828375/10531)]$ |
92575.b1 |
92575ba2 |
92575.b |
92575ba |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 23^{2} \) |
\( - 5^{3} \cdot 7^{5} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1610$ |
$48$ |
$1$ |
$4.536584274$ |
$1$ |
|
$2$ |
$475200$ |
$1.621941$ |
$-2887553024/16807$ |
$0.98803$ |
$3.97306$ |
$[0, -1, 1, -78468, -8476662]$ |
\(y^2+y=x^3-x^2-78468x-8476662\) |
5.12.0.a.1, 70.24.1.d.1, 115.24.0.?, 1610.48.1.? |
$[(1986, 87549)]$ |
92575.bd1 |
92575bd2 |
92575.bd |
92575bd |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 23^{2} \) |
\( - 5^{9} \cdot 7^{5} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$1610$ |
$48$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2376000$ |
$2.426659$ |
$-2887553024/16807$ |
$0.98803$ |
$4.81748$ |
$[0, 1, 1, -1961708, -1063506131]$ |
\(y^2+y=x^3+x^2-1961708x-1063506131\) |
5.12.0.a.1, 70.24.1.d.1, 115.24.0.?, 1610.48.1.? |
$[]$ |
100800.bq1 |
100800gy2 |
100800.bq |
100800gy |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{9} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$840$ |
$48$ |
$1$ |
$18.41700291$ |
$1$ |
|
$0$ |
$480000$ |
$1.754791$ |
$-2887553024/16807$ |
$0.98803$ |
$4.08208$ |
$[0, 0, 0, -133500, -18868750]$ |
\(y^2=x^3-133500x-18868750\) |
5.12.0.a.1, 70.24.1.d.1, 120.24.0.?, 840.48.1.? |
$[(994208275/753, 30604151036125/753)]$ |
100800.gf1 |
100800os2 |
100800.gf |
100800os |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$840$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$96000$ |
$0.950072$ |
$-2887553024/16807$ |
$0.98803$ |
$3.24389$ |
$[0, 0, 0, -5340, 150950]$ |
\(y^2=x^3-5340x+150950\) |
5.12.0.a.1, 70.24.1.d.1, 120.24.0.?, 840.48.1.? |
$[]$ |
100800.kb1 |
100800ib2 |
100800.kb |
100800ib |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{3} \cdot 7^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$840$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$96000$ |
$0.950072$ |
$-2887553024/16807$ |
$0.98803$ |
$3.24389$ |
$[0, 0, 0, -5340, -150950]$ |
\(y^2=x^3-5340x-150950\) |
5.12.0.a.1, 70.24.1.d.1, 120.24.0.?, 840.48.1.? |
$[]$ |
100800.oi1 |
100800ps2 |
100800.oi |
100800ps |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{9} \cdot 7^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$840$ |
$48$ |
$1$ |
$1.460441225$ |
$1$ |
|
$2$ |
$480000$ |
$1.754791$ |
$-2887553024/16807$ |
$0.98803$ |
$4.08208$ |
$[0, 0, 0, -133500, 18868750]$ |
\(y^2=x^3-133500x+18868750\) |
5.12.0.a.1, 70.24.1.d.1, 120.24.0.?, 840.48.1.? |
$[(-225, 6125)]$ |
147175.b1 |
147175a2 |
147175.b |
147175a |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 29^{2} \) |
\( - 5^{9} \cdot 7^{5} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2030$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$4900000$ |
$2.542561$ |
$-2887553024/16807$ |
$0.98803$ |
$4.74667$ |
$[0, -1, 1, -3118708, 2131548568]$ |
\(y^2+y=x^3-x^2-3118708x+2131548568\) |
5.12.0.a.1, 70.24.1.d.1, 145.24.0.?, 2030.48.1.? |
$[]$ |
147175.s1 |
147175s2 |
147175.s |
147175s |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 29^{2} \) |
\( - 5^{3} \cdot 7^{5} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2030$ |
$48$ |
$1$ |
$3.821786170$ |
$1$ |
|
$0$ |
$980000$ |
$1.737841$ |
$-2887553024/16807$ |
$0.98803$ |
$3.93514$ |
$[0, 1, 1, -124748, 17002489]$ |
\(y^2+y=x^3+x^2-124748x+17002489\) |
5.12.0.a.1, 70.24.1.d.1, 145.24.0.?, 2030.48.1.? |
$[(797/2, 2481/2)]$ |
148225.c1 |
148225b2 |
148225.c |
148225b |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 5^{9} \cdot 7^{11} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$770$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$12960000$ |
$3.030815$ |
$-2887553024/16807$ |
$0.98803$ |
$5.23592$ |
$[0, -1, 1, -21986708, 39887917068]$ |
\(y^2+y=x^3-x^2-21986708x+39887917068\) |
5.12.0.a.1, 70.24.1.d.1, 110.24.0.?, 385.24.0.?, 770.48.1.? |
$[]$ |
148225.cv1 |
148225cv2 |
148225.cv |
148225cv |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 5^{3} \cdot 7^{11} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$770$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2592000$ |
$2.226097$ |
$-2887553024/16807$ |
$0.98803$ |
$4.42488$ |
$[0, 1, 1, -879468, 318751549]$ |
\(y^2+y=x^3+x^2-879468x+318751549\) |
5.12.0.a.1, 70.24.1.d.1, 110.24.0.?, 385.24.0.?, 770.48.1.? |
$[]$ |
168175.b1 |
168175b2 |
168175.b |
168175b |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 31^{2} \) |
\( - 5^{3} \cdot 7^{5} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2170$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1224000$ |
$1.771187$ |
$-2887553024/16807$ |
$0.98803$ |
$3.92478$ |
$[0, 1, 1, -142548, -20866736]$ |
\(y^2+y=x^3+x^2-142548x-20866736\) |
5.12.0.a.1, 70.24.1.d.1, 155.24.0.?, 2170.48.1.? |
$[]$ |
168175.bf1 |
168175bf2 |
168175.bf |
168175bf |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 31^{2} \) |
\( - 5^{9} \cdot 7^{5} \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2170$ |
$48$ |
$1$ |
$41.10834771$ |
$1$ |
|
$0$ |
$6120000$ |
$2.575905$ |
$-2887553024/16807$ |
$0.98803$ |
$4.72731$ |
$[0, -1, 1, -3563708, -2601214557]$ |
\(y^2+y=x^3-x^2-3563708x-2601214557\) |
5.12.0.a.1, 70.24.1.d.1, 155.24.0.?, 2170.48.1.? |
$[(185678400171719049993/237383852, 1957779798072696767160699280771/237383852)]$ |
176400.ea1 |
176400p2 |
176400.ea |
176400p |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{9} \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$420$ |
$48$ |
$1$ |
$29.62527694$ |
$1$ |
|
$0$ |
$11520000$ |
$3.074322$ |
$-2887553024/16807$ |
$0.98803$ |
$5.20371$ |
$[0, 0, 0, -26166000, -51775850000]$ |
\(y^2=x^3-26166000x-51775850000\) |
5.12.0.a.1, 60.24.0-5.a.1.4, 70.24.1.d.1, 420.48.1.? |
$[(5223994233459225/668888, 332511546649200113055875/668888)]$ |
176400.eb1 |
176400q2 |
176400.eb |
176400q |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{3} \cdot 7^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$420$ |
$48$ |
$1$ |
$19.23455553$ |
$1$ |
|
$0$ |
$2304000$ |
$2.269600$ |
$-2887553024/16807$ |
$0.98803$ |
$4.40436$ |
$[0, 0, 0, -1046640, -414206800]$ |
\(y^2=x^3-1046640x-414206800\) |
5.12.0.a.1, 60.24.0-5.a.1.3, 70.24.1.d.1, 420.48.1.? |
$[(2358260345/1409, 12081654649645/1409)]$ |
190575.d1 |
190575c2 |
190575.d |
190575c |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2} \) |
\( - 3^{6} \cdot 5^{3} \cdot 7^{5} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2310$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1620000$ |
$1.802446$ |
$-2887553024/16807$ |
$0.98803$ |
$3.91527$ |
$[0, 0, 1, -161535, 25114306]$ |
\(y^2+y=x^3-161535x+25114306\) |
5.12.0.a.1, 70.24.1.d.1, 165.24.0.?, 2310.48.1.? |
$[]$ |
190575.fc1 |
190575en2 |
190575.fc |
190575en |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 11^{2} \) |
\( - 3^{6} \cdot 5^{9} \cdot 7^{5} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2310$ |
$48$ |
$1$ |
$7.907974656$ |
$1$ |
|
$0$ |
$8100000$ |
$2.607166$ |
$-2887553024/16807$ |
$0.98803$ |
$4.70954$ |
$[0, 0, 1, -4038375, 3139288281]$ |
\(y^2+y=x^3-4038375x+3139288281\) |
5.12.0.a.1, 70.24.1.d.1, 165.24.0.?, 2310.48.1.? |
$[(316825/6, 174041767/6)]$ |
207025.e1 |
207025e2 |
207025.e |
207025e |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 5^{9} \cdot 7^{11} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$910$ |
$48$ |
$1$ |
$9.868059761$ |
$1$ |
|
$0$ |
$22464000$ |
$3.114342$ |
$-2887553024/16807$ |
$0.98803$ |
$5.17489$ |
$[0, -1, 1, -30708708, -65818202682]$ |
\(y^2+y=x^3-x^2-30708708x-65818202682\) |
5.12.0.a.1, 70.24.1.d.1, 130.24.0.?, 455.24.0.?, 910.48.1.? |
$[(11818077/41, 17669074602/41)]$ |
207025.cu1 |
207025cr2 |
207025.cu |
207025cr |
$2$ |
$5$ |
\( 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 5^{3} \cdot 7^{11} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$910$ |
$48$ |
$1$ |
$67.00976739$ |
$1$ |
|
$0$ |
$4492800$ |
$2.309624$ |
$-2887553024/16807$ |
$0.98803$ |
$4.38599$ |
$[0, 1, 1, -1228348, -527036961]$ |
\(y^2+y=x^3+x^2-1228348x-527036961\) |
5.12.0.a.1, 70.24.1.d.1, 130.24.0.?, 455.24.0.?, 910.48.1.? |
$[(1906782893451412395488367478077/10652801473558, 2627203311335019613840952493853485992054414559/10652801473558)]$ |
239575.b1 |
239575b2 |
239575.b |
239575b |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 37^{2} \) |
\( - 5^{9} \cdot 7^{5} \cdot 37^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2590$ |
$48$ |
$1$ |
$9.150496124$ |
$1$ |
|
$8$ |
$10368000$ |
$2.664371$ |
$-2887553024/16807$ |
$0.98803$ |
$4.67796$ |
$[0, 1, 1, -5076708, 4423116994]$ |
\(y^2+y=x^3+x^2-5076708x+4423116994\) |
5.12.0.a.1, 70.24.1.d.1, 185.24.0.?, 2590.48.1.? |
$[(-617, 85562), (7597, 635900)]$ |
239575.t1 |
239575t2 |
239575.t |
239575t |
$2$ |
$5$ |
\( 5^{2} \cdot 7 \cdot 37^{2} \) |
\( - 5^{3} \cdot 7^{5} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2590$ |
$48$ |
$1$ |
$1.482467537$ |
$1$ |
|
$0$ |
$2073600$ |
$1.859652$ |
$-2887553024/16807$ |
$0.98803$ |
$3.89836$ |
$[0, -1, 1, -203068, 35466163]$ |
\(y^2+y=x^3-x^2-203068x+35466163\) |
5.12.0.a.1, 70.24.1.d.1, 185.24.0.?, 2590.48.1.? |
$[(877/2, 9579/2)]$ |