| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 294.e2 |
294a1 |
294.e |
294a |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \) |
\( - 2 \cdot 3 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.48.0.2 |
7B.1.4 |
$168$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$84$ |
$0.134477$ |
$-2401/6$ |
$1.11692$ |
$4.40252$ |
$[1, 1, 1, -50, 293]$ |
\(y^2+xy+y=x^3+x^2-50x+293\) |
7.48.0-7.a.2.1, 24.2.0.b.1, 168.96.2.? |
$[ ]$ |
| 294.f2 |
294b1 |
294.f |
294b |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \) |
\( - 2 \cdot 3 \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.48.0.5 |
7B.1.3 |
$168$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$12$ |
$-0.838478$ |
$-2401/6$ |
$1.11692$ |
$2.34827$ |
$[1, 0, 0, -1, -1]$ |
\(y^2+xy=x^3-x-1\) |
7.48.0-7.a.2.2, 24.2.0.b.1, 168.96.2.? |
$[ ]$ |
| 882.c2 |
882c1 |
882.c |
882c |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3^{7} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$672$ |
$0.683783$ |
$-2401/6$ |
$1.11692$ |
$4.66129$ |
$[1, -1, 0, -450, -8366]$ |
\(y^2+xy=x^3-x^2-450x-8366\) |
7.24.0.a.2, 21.48.0-7.a.2.1, 24.2.0.b.1, 56.48.0-7.a.2.7, 168.96.2.? |
$[ ]$ |
| 882.d2 |
882d1 |
882.d |
882d |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3^{7} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$0.165808629$ |
$1$ |
|
$6$ |
$96$ |
$-0.289172$ |
$-2401/6$ |
$1.11692$ |
$2.93980$ |
$[1, -1, 0, -9, 27]$ |
\(y^2+xy=x^3-x^2-9x+27\) |
7.24.0.a.2, 21.48.0-7.a.2.2, 24.2.0.b.1, 56.48.0-7.a.2.5, 168.96.2.? |
$[(3, 3)]$ |
| 2352.f2 |
2352l1 |
2352.f |
2352l |
$2$ |
$7$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3 \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$0.260480259$ |
$1$ |
|
$6$ |
$288$ |
$-0.145331$ |
$-2401/6$ |
$1.11692$ |
$2.79071$ |
$[0, -1, 0, -16, 64]$ |
\(y^2=x^3-x^2-16x+64\) |
7.24.0.a.2, 24.2.0.b.1, 28.48.0-7.a.2.1, 168.96.2.? |
$[(0, 8)]$ |
| 2352.t2 |
2352r1 |
2352.t |
2352r |
$2$ |
$7$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \) |
\( - 2^{13} \cdot 3 \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$0.743884380$ |
$1$ |
|
$2$ |
$2016$ |
$0.827623$ |
$-2401/6$ |
$1.11692$ |
$4.29470$ |
$[0, 1, 0, -800, -20364]$ |
\(y^2=x^3+x^2-800x-20364\) |
7.24.0.a.2, 24.2.0.b.1, 28.48.0-7.a.2.2, 168.96.2.? |
$[(114, 1176)]$ |
| 7056.w2 |
7056bk1 |
7056.w |
7056bk |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{7} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$0.322031880$ |
$1$ |
|
$8$ |
$16128$ |
$1.376930$ |
$-2401/6$ |
$1.11692$ |
$4.50611$ |
$[0, 0, 0, -7203, 542626]$ |
\(y^2=x^3-7203x+542626\) |
7.24.0.a.2, 24.2.0.b.1, 56.48.0-7.a.2.8, 84.48.0.?, 168.96.2.? |
$[(-49, 882)]$ |
| 7056.bl2 |
7056bs1 |
7056.bl |
7056bs |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{7} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2304$ |
$0.403975$ |
$-2401/6$ |
$1.11692$ |
$3.18858$ |
$[0, 0, 0, -147, -1582]$ |
\(y^2=x^3-147x-1582\) |
7.24.0.a.2, 24.2.0.b.1, 56.48.0-7.a.2.6, 84.48.0.?, 168.96.2.? |
$[ ]$ |
| 7350.q2 |
7350j1 |
7350.q |
7350j |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3 \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$1680$ |
$-0.033760$ |
$-2401/6$ |
$1.11692$ |
$2.58392$ |
$[1, 1, 0, -25, -125]$ |
\(y^2+xy=x^3+x^2-25x-125\) |
7.24.0.a.2, 24.2.0.b.1, 35.48.0-7.a.2.1, 168.48.2.?, 840.96.2.? |
$[ ]$ |
| 7350.bl2 |
7350u1 |
7350.bl |
7350u |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3 \cdot 5^{6} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$11760$ |
$0.939196$ |
$-2401/6$ |
$1.11692$ |
$3.89541$ |
$[1, 0, 1, -1251, 39148]$ |
\(y^2+xy+y=x^3-1251x+39148\) |
7.24.0.a.2, 24.2.0.b.1, 35.48.0-7.a.2.2, 168.48.2.?, 840.96.2.? |
$[ ]$ |
| 9408.q2 |
9408bp1 |
9408.q |
9408bp |
$2$ |
$7$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{19} \cdot 3 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$16128$ |
$1.174198$ |
$-2401/6$ |
$1.11692$ |
$4.09853$ |
$[0, -1, 0, -3201, -159711]$ |
\(y^2=x^3-x^2-3201x-159711\) |
7.24.0.a.2, 24.2.0.b.1, 56.48.0-7.a.2.4, 84.48.0.?, 168.96.2.? |
$[ ]$ |
| 9408.z2 |
9408h1 |
9408.z |
9408h |
$2$ |
$7$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{19} \cdot 3 \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2304$ |
$0.201242$ |
$-2401/6$ |
$1.11692$ |
$2.82242$ |
$[0, -1, 0, -65, -447]$ |
\(y^2=x^3-x^2-65x-447\) |
7.24.0.a.2, 24.2.0.b.1, 42.48.0-7.a.2.2, 56.48.0-7.a.2.1, 168.96.2.? |
$[ ]$ |
| 9408.ce2 |
9408v1 |
9408.ce |
9408v |
$2$ |
$7$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{19} \cdot 3 \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$16128$ |
$1.174198$ |
$-2401/6$ |
$1.11692$ |
$4.09853$ |
$[0, 1, 0, -3201, 159711]$ |
\(y^2=x^3+x^2-3201x+159711\) |
7.24.0.a.2, 24.2.0.b.1, 42.48.0-7.a.2.1, 56.48.0-7.a.2.3, 168.96.2.? |
$[ ]$ |
| 9408.cr2 |
9408ct1 |
9408.cr |
9408ct |
$2$ |
$7$ |
\( 2^{6} \cdot 3 \cdot 7^{2} \) |
\( - 2^{19} \cdot 3 \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2304$ |
$0.201242$ |
$-2401/6$ |
$1.11692$ |
$2.82242$ |
$[0, 1, 0, -65, 447]$ |
\(y^2=x^3+x^2-65x+447\) |
7.24.0.a.2, 24.2.0.b.1, 56.48.0-7.a.2.2, 84.48.0.?, 168.96.2.? |
$[ ]$ |
| 22050.db2 |
22050dx1 |
22050.db |
22050dx |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3^{7} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$2.927456598$ |
$1$ |
|
$0$ |
$94080$ |
$1.488503$ |
$-2401/6$ |
$1.11692$ |
$4.12660$ |
$[1, -1, 1, -11255, -1057003]$ |
\(y^2+xy+y=x^3-x^2-11255x-1057003\) |
7.24.0.a.2, 24.2.0.b.1, 105.48.0.?, 168.48.2.?, 280.48.0.?, $\ldots$ |
$[(687/2, 10775/2)]$ |
| 22050.dc2 |
22050ev1 |
22050.dc |
22050ev |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3^{7} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$13440$ |
$0.515547$ |
$-2401/6$ |
$1.11692$ |
$2.95917$ |
$[1, -1, 1, -230, 3147]$ |
\(y^2+xy+y=x^3-x^2-230x+3147\) |
7.24.0.a.2, 24.2.0.b.1, 105.48.0.?, 168.48.2.?, 280.48.0.?, $\ldots$ |
$[ ]$ |
| 28224.cd2 |
28224fo1 |
28224.cd |
28224fo |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{7} \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$1.052768306$ |
$1$ |
|
$16$ |
$18432$ |
$0.750548$ |
$-2401/6$ |
$1.11692$ |
$3.16307$ |
$[0, 0, 0, -588, -12656]$ |
\(y^2=x^3-588x-12656\) |
7.24.0.a.2, 24.2.0.b.1, 28.48.0-7.a.2.3, 168.96.2.? |
$[(50, 288), (32, 36)]$ |
| 28224.co2 |
28224bs1 |
28224.co |
28224bs |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{7} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$0.710108843$ |
$1$ |
|
$4$ |
$18432$ |
$0.750548$ |
$-2401/6$ |
$1.11692$ |
$3.16307$ |
$[0, 0, 0, -588, 12656]$ |
\(y^2=x^3-588x+12656\) |
7.24.0.a.2, 14.48.0-7.a.2.1, 24.2.0.b.1, 168.96.2.? |
$[(46, 288)]$ |
| 28224.eb2 |
28224en1 |
28224.eb |
28224en |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{7} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$0.629216348$ |
$1$ |
|
$4$ |
$129024$ |
$1.723503$ |
$-2401/6$ |
$1.11692$ |
$4.30237$ |
$[0, 0, 0, -28812, 4341008]$ |
\(y^2=x^3-28812x+4341008\) |
7.24.0.a.2, 24.2.0.b.1, 28.48.0-7.a.2.4, 168.96.2.? |
$[(98, 1568)]$ |
| 28224.em2 |
28224x1 |
28224.em |
28224x |
$2$ |
$7$ |
\( 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3^{7} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$168$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$129024$ |
$1.723503$ |
$-2401/6$ |
$1.11692$ |
$4.30237$ |
$[0, 0, 0, -28812, -4341008]$ |
\(y^2=x^3-28812x-4341008\) |
7.24.0.a.2, 14.48.0-7.a.2.2, 24.2.0.b.1, 168.96.2.? |
$[ ]$ |
| 35574.k2 |
35574d1 |
35574.k |
35574d |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2 \cdot 3 \cdot 7^{8} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$1848$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$99960$ |
$1.333424$ |
$-2401/6$ |
$1.11692$ |
$3.76067$ |
$[1, 1, 0, -6052, -420482]$ |
\(y^2+xy=x^3+x^2-6052x-420482\) |
7.24.0.a.2, 24.2.0.b.1, 77.48.0.?, 168.48.2.?, 1848.96.2.? |
$[ ]$ |
| 35574.y2 |
35574bd1 |
35574.y |
35574bd |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2 \cdot 3 \cdot 7^{2} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$1848$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$14280$ |
$0.360469$ |
$-2401/6$ |
$1.11692$ |
$2.64653$ |
$[1, 0, 1, -124, 1208]$ |
\(y^2+xy+y=x^3-124x+1208\) |
7.24.0.a.2, 24.2.0.b.1, 77.48.0.?, 168.48.2.?, 1848.96.2.? |
$[ ]$ |
| 49686.g2 |
49686c1 |
49686.g |
49686c |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3 \cdot 7^{8} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$2184$ |
$96$ |
$2$ |
$0.575972728$ |
$1$ |
|
$4$ |
$197568$ |
$1.416952$ |
$-2401/6$ |
$1.11692$ |
$3.73716$ |
$[1, 1, 0, -8453, 686379]$ |
\(y^2+xy=x^3+x^2-8453x+686379\) |
7.24.0.a.2, 24.2.0.b.1, 91.48.0.?, 168.48.2.?, 2184.96.2.? |
$[(265, 4008)]$ |
| 49686.bj2 |
49686bg1 |
49686.bj |
49686bg |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3 \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$2184$ |
$96$ |
$2$ |
$4.609968670$ |
$1$ |
|
$0$ |
$28224$ |
$0.443996$ |
$-2401/6$ |
$1.11692$ |
$2.65745$ |
$[1, 0, 1, -173, -2026]$ |
\(y^2+xy+y=x^3-173x-2026\) |
7.24.0.a.2, 24.2.0.b.1, 91.48.0.?, 168.48.2.?, 2184.96.2.? |
$[(842/7, 1191/7)]$ |
| 58800.j2 |
58800fa1 |
58800.j |
58800fa |
$2$ |
$7$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 3 \cdot 5^{6} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$282240$ |
$1.632343$ |
$-2401/6$ |
$1.11692$ |
$3.91521$ |
$[0, -1, 0, -20008, -2505488]$ |
\(y^2=x^3-x^2-20008x-2505488\) |
7.24.0.a.2, 24.2.0.b.1, 140.48.0.?, 168.48.2.?, 840.96.2.? |
$[ ]$ |
| 58800.fk2 |
58800jb1 |
58800.fk |
58800jb |
$2$ |
$7$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 3 \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$40320$ |
$0.659388$ |
$-2401/6$ |
$1.11692$ |
$2.85206$ |
$[0, 1, 0, -408, 7188]$ |
\(y^2=x^3+x^2-408x+7188\) |
7.24.0.a.2, 24.2.0.b.1, 140.48.0.?, 168.48.2.?, 840.96.2.? |
$[ ]$ |
| 84966.cx2 |
84966ct1 |
84966.cx |
84966ct |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3 \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$2856$ |
$96$ |
$2$ |
$7.572360052$ |
$1$ |
|
$0$ |
$59136$ |
$0.578128$ |
$-2401/6$ |
$1.11692$ |
$2.67364$ |
$[1, 1, 1, -295, -4621]$ |
\(y^2+xy+y=x^3+x^2-295x-4621\) |
7.24.0.a.2, 24.2.0.b.1, 119.48.0.?, 168.48.2.?, 2856.96.2.? |
$[(30643/14, 5134095/14)]$ |
| 84966.ds2 |
84966dm1 |
84966.ds |
84966dm |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3 \cdot 7^{8} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$2856$ |
$96$ |
$2$ |
$4.312800598$ |
$1$ |
|
$0$ |
$413952$ |
$1.551083$ |
$-2401/6$ |
$1.11692$ |
$3.70232$ |
$[1, 0, 0, -14456, 1541574]$ |
\(y^2+xy=x^3-14456x+1541574\) |
7.24.0.a.2, 24.2.0.b.1, 119.48.0.?, 168.48.2.?, 2856.96.2.? |
$[(3879/10, 1000197/10)]$ |
| 106134.l2 |
106134m1 |
106134.l |
106134m |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3 \cdot 7^{2} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$3192$ |
$96$ |
$2$ |
$1.995445517$ |
$1$ |
|
$0$ |
$72576$ |
$0.633741$ |
$-2401/6$ |
$1.11692$ |
$2.67992$ |
$[1, 1, 0, -368, 6126]$ |
\(y^2+xy=x^3+x^2-368x+6126\) |
7.24.0.a.2, 24.2.0.b.1, 133.48.0.?, 168.48.2.?, 3192.96.2.? |
$[(-65/2, 787/2)]$ |
| 106134.be2 |
106134u1 |
106134.be |
106134u |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 2 \cdot 3 \cdot 7^{8} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$3192$ |
$96$ |
$2$ |
$19.08292091$ |
$1$ |
|
$0$ |
$508032$ |
$1.606695$ |
$-2401/6$ |
$1.11692$ |
$3.68882$ |
$[1, 0, 1, -18058, -2155366]$ |
\(y^2+xy+y=x^3-18058x-2155366\) |
7.24.0.a.2, 24.2.0.b.1, 133.48.0.?, 168.48.2.?, 3192.96.2.? |
$[(3592113834/1001, 213343451193566/1001)]$ |
| 106722.fk2 |
106722fq1 |
106722.fk |
106722fq |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2 \cdot 3^{7} \cdot 7^{8} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$1848$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$799680$ |
$1.882730$ |
$-2401/6$ |
$1.11692$ |
$3.97315$ |
$[1, -1, 1, -54473, 11298543]$ |
\(y^2+xy+y=x^3-x^2-54473x+11298543\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 231.48.0.?, 616.48.0.?, $\ldots$ |
$[ ]$ |
| 106722.ge2 |
106722gm1 |
106722.ge |
106722gm |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
\( - 2 \cdot 3^{7} \cdot 7^{2} \cdot 11^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$1848$ |
$96$ |
$2$ |
$8.399270223$ |
$1$ |
|
$0$ |
$114240$ |
$0.909776$ |
$-2401/6$ |
$1.11692$ |
$2.96473$ |
$[1, -1, 1, -1112, -32623]$ |
\(y^2+xy+y=x^3-x^2-1112x-32623\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 231.48.0.?, 616.48.0.?, $\ldots$ |
$[(12975/14, 1073969/14)]$ |
| 149058.gb2 |
149058ba1 |
149058.gb |
149058ba |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{7} \cdot 7^{2} \cdot 13^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$2184$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$225792$ |
$0.993302$ |
$-2401/6$ |
$1.11692$ |
$2.96572$ |
$[1, -1, 1, -1553, 54695]$ |
\(y^2+xy+y=x^3-x^2-1553x+54695\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 273.48.0.?, 728.48.0.?, $\ldots$ |
$[ ]$ |
| 149058.hh2 |
149058bx1 |
149058.hh |
149058bx |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 3^{7} \cdot 7^{8} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$2184$ |
$96$ |
$2$ |
$8.884850386$ |
$1$ |
|
$0$ |
$1580544$ |
$1.966257$ |
$-2401/6$ |
$1.11692$ |
$3.94586$ |
$[1, -1, 1, -76082, -18608313]$ |
\(y^2+xy+y=x^3-x^2-76082x-18608313\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 273.48.0.?, 728.48.0.?, $\ldots$ |
$[(3402701/44, 6111824805/44)]$ |
| 155526.bv2 |
155526bh1 |
155526.bv |
155526bh |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 23^{2} \) |
\( - 2 \cdot 3 \cdot 7^{8} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$3864$ |
$96$ |
$2$ |
$6.248044336$ |
$1$ |
|
$0$ |
$1034880$ |
$1.702223$ |
$-2401/6$ |
$1.11692$ |
$3.66680$ |
$[1, 1, 1, -26461, -3831703]$ |
\(y^2+xy+y=x^3+x^2-26461x-3831703\) |
7.24.0.a.2, 24.2.0.b.1, 161.48.0.?, 168.48.2.?, 3864.96.2.? |
$[(112909/20, 25746987/20)]$ |
| 155526.cx2 |
155526p1 |
155526.cx |
155526p |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 23^{2} \) |
\( - 2 \cdot 3 \cdot 7^{2} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$3864$ |
$96$ |
$2$ |
$7.102363708$ |
$1$ |
|
$0$ |
$147840$ |
$0.729269$ |
$-2401/6$ |
$1.11692$ |
$2.69015$ |
$[1, 0, 0, -540, 11094]$ |
\(y^2+xy=x^3-540x+11094\) |
7.24.0.a.2, 24.2.0.b.1, 161.48.0.?, 168.48.2.?, 3864.96.2.? |
$[(16349/28, 1854845/28)]$ |
| 176400.sw2 |
176400ic1 |
176400.sw |
176400ic |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{7} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$4.042805779$ |
$1$ |
|
$2$ |
$2257920$ |
$2.181648$ |
$-2401/6$ |
$1.11692$ |
$4.10480$ |
$[0, 0, 0, -180075, 67828250]$ |
\(y^2=x^3-180075x+67828250\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 280.48.0.?, 420.48.0.?, $\ldots$ |
$[(589, 12888)]$ |
| 176400.sx2 |
176400gt1 |
176400.sx |
176400gt |
$2$ |
$7$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 3^{7} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$322560$ |
$1.208694$ |
$-2401/6$ |
$1.11692$ |
$3.13833$ |
$[0, 0, 0, -3675, -197750]$ |
\(y^2=x^3-3675x-197750\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 280.48.0.?, 420.48.0.?, $\ldots$ |
$[ ]$ |
| 235200.x2 |
235200x1 |
235200.x |
235200x |
$2$ |
$7$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3 \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$1.491863138$ |
$1$ |
|
$4$ |
$2257920$ |
$1.978916$ |
$-2401/6$ |
$1.11692$ |
$3.81263$ |
$[0, -1, 0, -80033, 20123937]$ |
\(y^2=x^3-x^2-80033x+20123937\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 210.48.0.?, 280.48.0.?, $\ldots$ |
$[(-359, 1568)]$ |
| 235200.no2 |
235200no1 |
235200.no |
235200no |
$2$ |
$7$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3 \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$1.964841292$ |
$1$ |
|
$2$ |
$322560$ |
$1.005960$ |
$-2401/6$ |
$1.11692$ |
$2.86864$ |
$[0, -1, 0, -1633, 59137]$ |
\(y^2=x^3-x^2-1633x+59137\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 280.48.0.?, 420.48.0.?, $\ldots$ |
$[(-19, 288)]$ |
| 235200.pp2 |
235200pp1 |
235200.pp |
235200pp |
$2$ |
$7$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3 \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$6.252971560$ |
$1$ |
|
$0$ |
$322560$ |
$1.005960$ |
$-2401/6$ |
$1.11692$ |
$2.86864$ |
$[0, 1, 0, -1633, -59137]$ |
\(y^2=x^3+x^2-1633x-59137\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 210.48.0.?, 280.48.0.?, $\ldots$ |
$[(3523/7, 153504/7)]$ |
| 235200.bby2 |
235200bby1 |
235200.bby |
235200bby |
$2$ |
$7$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{19} \cdot 3 \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$840$ |
$96$ |
$2$ |
$23.00510929$ |
$1$ |
|
$0$ |
$2257920$ |
$1.978916$ |
$-2401/6$ |
$1.11692$ |
$3.81263$ |
$[0, 1, 0, -80033, -20123937]$ |
\(y^2=x^3+x^2-80033x-20123937\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 280.48.0.?, 420.48.0.?, $\ldots$ |
$[(83123203927/7161, 23547480116717152/7161)]$ |
| 247254.i2 |
247254i1 |
247254.i |
247254i |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 29^{2} \) |
\( - 2 \cdot 3 \cdot 7^{2} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$4872$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$294000$ |
$0.845169$ |
$-2401/6$ |
$1.11692$ |
$2.70172$ |
$[1, 1, 0, -858, -22686]$ |
\(y^2+xy=x^3+x^2-858x-22686\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 203.48.0.?, 4872.96.2.? |
$[ ]$ |
| 247254.bm2 |
247254bm1 |
247254.bm |
247254bm |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 29^{2} \) |
\( - 2 \cdot 3 \cdot 7^{8} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$4872$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2058000$ |
$1.818125$ |
$-2401/6$ |
$1.11692$ |
$3.64191$ |
$[1, 0, 1, -42068, 7655120]$ |
\(y^2+xy+y=x^3-42068x+7655120\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 203.48.0.?, 4872.96.2.? |
$[ ]$ |
| 254898.bq2 |
254898bq1 |
254898.bq |
254898bq |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{7} \cdot 7^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$2856$ |
$96$ |
$2$ |
$1.686034365$ |
$1$ |
|
$2$ |
$473088$ |
$1.127434$ |
$-2401/6$ |
$1.11692$ |
$2.96720$ |
$[1, -1, 0, -2655, 122107]$ |
\(y^2+xy=x^3-x^2-2655x+122107\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 357.48.0.?, 952.48.0.?, $\ldots$ |
$[(251, 3776)]$ |
| 254898.ct2 |
254898ct1 |
254898.ct |
254898ct |
$2$ |
$7$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) |
\( - 2 \cdot 3^{7} \cdot 7^{8} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$2856$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$3311616$ |
$2.100388$ |
$-2401/6$ |
$1.11692$ |
$3.90509$ |
$[1, -1, 0, -130104, -41622498]$ |
\(y^2+xy=x^3-x^2-130104x-41622498\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 357.48.0.?, 952.48.0.?, $\ldots$ |
$[ ]$ |
| 282534.ce2 |
282534ce1 |
282534.ce |
282534ce |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 31^{2} \) |
\( - 2 \cdot 3 \cdot 7^{2} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$5208$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$365400$ |
$0.878515$ |
$-2401/6$ |
$1.11692$ |
$2.70489$ |
$[1, 1, 1, -981, 26865]$ |
\(y^2+xy+y=x^3+x^2-981x+26865\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 217.48.0.?, 5208.96.2.? |
$[ ]$ |
| 282534.da2 |
282534da1 |
282534.da |
282534da |
$2$ |
$7$ |
\( 2 \cdot 3 \cdot 7^{2} \cdot 31^{2} \) |
\( - 2 \cdot 3 \cdot 7^{8} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$5208$ |
$96$ |
$2$ |
$1$ |
$49$ |
$7$ |
$0$ |
$2557800$ |
$1.851471$ |
$-2401/6$ |
$1.11692$ |
$3.63509$ |
$[1, 0, 0, -48070, -9358966]$ |
\(y^2+xy=x^3-48070x-9358966\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 217.48.0.?, 5208.96.2.? |
$[ ]$ |
| 284592.cj2 |
284592cj1 |
284592.cj |
284592cj |
$2$ |
$7$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{13} \cdot 3 \cdot 7^{2} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$1848$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$342720$ |
$1.053616$ |
$-2401/6$ |
$1.11692$ |
$2.87063$ |
$[0, -1, 0, -1976, -77328]$ |
\(y^2=x^3-x^2-1976x-77328\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 308.48.0.?, 1848.96.2.? |
$[ ]$ |
| 284592.jb2 |
284592jb1 |
284592.jb |
284592jb |
$2$ |
$7$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 11^{2} \) |
\( - 2^{13} \cdot 3 \cdot 7^{8} \cdot 11^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$1848$ |
$96$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$2399040$ |
$2.026573$ |
$-2401/6$ |
$1.11692$ |
$3.80030$ |
$[0, 1, 0, -96840, 26717172]$ |
\(y^2=x^3+x^2-96840x+26717172\) |
7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 308.48.0.?, 1848.96.2.? |
$[ ]$ |