Learn more

Refine search


Results (1-50 of 64 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
294.e2 294.e \( 2 \cdot 3 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -50, 293]$ \(y^2+xy+y=x^3+x^2-50x+293\) 7.48.0-7.a.2.1, 24.2.0.b.1, 168.96.2.? $[ ]$
294.f2 294.f \( 2 \cdot 3 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -1, -1]$ \(y^2+xy=x^3-x-1\) 7.48.0-7.a.2.2, 24.2.0.b.1, 168.96.2.? $[ ]$
882.c2 882.c \( 2 \cdot 3^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -450, -8366]$ \(y^2+xy=x^3-x^2-450x-8366\) 7.24.0.a.2, 21.48.0-7.a.2.1, 24.2.0.b.1, 56.48.0-7.a.2.7, 168.96.2.? $[ ]$
882.d2 882.d \( 2 \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.165808629$ $[1, -1, 0, -9, 27]$ \(y^2+xy=x^3-x^2-9x+27\) 7.24.0.a.2, 21.48.0-7.a.2.2, 24.2.0.b.1, 56.48.0-7.a.2.5, 168.96.2.? $[(3, 3)]$
2352.f2 2352.f \( 2^{4} \cdot 3 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.260480259$ $[0, -1, 0, -16, 64]$ \(y^2=x^3-x^2-16x+64\) 7.24.0.a.2, 24.2.0.b.1, 28.48.0-7.a.2.1, 168.96.2.? $[(0, 8)]$
2352.t2 2352.t \( 2^{4} \cdot 3 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.743884380$ $[0, 1, 0, -800, -20364]$ \(y^2=x^3+x^2-800x-20364\) 7.24.0.a.2, 24.2.0.b.1, 28.48.0-7.a.2.2, 168.96.2.? $[(114, 1176)]$
7056.w2 7056.w \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.322031880$ $[0, 0, 0, -7203, 542626]$ \(y^2=x^3-7203x+542626\) 7.24.0.a.2, 24.2.0.b.1, 56.48.0-7.a.2.8, 84.48.0.?, 168.96.2.? $[(-49, 882)]$
7056.bl2 7056.bl \( 2^{4} \cdot 3^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -147, -1582]$ \(y^2=x^3-147x-1582\) 7.24.0.a.2, 24.2.0.b.1, 56.48.0-7.a.2.6, 84.48.0.?, 168.96.2.? $[ ]$
7350.q2 7350.q \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -25, -125]$ \(y^2+xy=x^3+x^2-25x-125\) 7.24.0.a.2, 24.2.0.b.1, 35.48.0-7.a.2.1, 168.48.2.?, 840.96.2.? $[ ]$
7350.bl2 7350.bl \( 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1251, 39148]$ \(y^2+xy+y=x^3-1251x+39148\) 7.24.0.a.2, 24.2.0.b.1, 35.48.0-7.a.2.2, 168.48.2.?, 840.96.2.? $[ ]$
9408.q2 9408.q \( 2^{6} \cdot 3 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -3201, -159711]$ \(y^2=x^3-x^2-3201x-159711\) 7.24.0.a.2, 24.2.0.b.1, 56.48.0-7.a.2.4, 84.48.0.?, 168.96.2.? $[ ]$
9408.z2 9408.z \( 2^{6} \cdot 3 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -65, -447]$ \(y^2=x^3-x^2-65x-447\) 7.24.0.a.2, 24.2.0.b.1, 42.48.0-7.a.2.2, 56.48.0-7.a.2.1, 168.96.2.? $[ ]$
9408.ce2 9408.ce \( 2^{6} \cdot 3 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -3201, 159711]$ \(y^2=x^3+x^2-3201x+159711\) 7.24.0.a.2, 24.2.0.b.1, 42.48.0-7.a.2.1, 56.48.0-7.a.2.3, 168.96.2.? $[ ]$
9408.cr2 9408.cr \( 2^{6} \cdot 3 \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -65, 447]$ \(y^2=x^3+x^2-65x+447\) 7.24.0.a.2, 24.2.0.b.1, 56.48.0-7.a.2.2, 84.48.0.?, 168.96.2.? $[ ]$
22050.db2 22050.db \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.927456598$ $[1, -1, 1, -11255, -1057003]$ \(y^2+xy+y=x^3-x^2-11255x-1057003\) 7.24.0.a.2, 24.2.0.b.1, 105.48.0.?, 168.48.2.?, 280.48.0.?, $\ldots$ $[(687/2, 10775/2)]$
22050.dc2 22050.dc \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -230, 3147]$ \(y^2+xy+y=x^3-x^2-230x+3147\) 7.24.0.a.2, 24.2.0.b.1, 105.48.0.?, 168.48.2.?, 280.48.0.?, $\ldots$ $[ ]$
28224.cd2 28224.cd \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $1.052768306$ $[0, 0, 0, -588, -12656]$ \(y^2=x^3-588x-12656\) 7.24.0.a.2, 24.2.0.b.1, 28.48.0-7.a.2.3, 168.96.2.? $[(50, 288), (32, 36)]$
28224.co2 28224.co \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.710108843$ $[0, 0, 0, -588, 12656]$ \(y^2=x^3-588x+12656\) 7.24.0.a.2, 14.48.0-7.a.2.1, 24.2.0.b.1, 168.96.2.? $[(46, 288)]$
28224.eb2 28224.eb \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.629216348$ $[0, 0, 0, -28812, 4341008]$ \(y^2=x^3-28812x+4341008\) 7.24.0.a.2, 24.2.0.b.1, 28.48.0-7.a.2.4, 168.96.2.? $[(98, 1568)]$
28224.em2 28224.em \( 2^{6} \cdot 3^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -28812, -4341008]$ \(y^2=x^3-28812x-4341008\) 7.24.0.a.2, 14.48.0-7.a.2.2, 24.2.0.b.1, 168.96.2.? $[ ]$
35574.k2 35574.k \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -6052, -420482]$ \(y^2+xy=x^3+x^2-6052x-420482\) 7.24.0.a.2, 24.2.0.b.1, 77.48.0.?, 168.48.2.?, 1848.96.2.? $[ ]$
35574.y2 35574.y \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -124, 1208]$ \(y^2+xy+y=x^3-124x+1208\) 7.24.0.a.2, 24.2.0.b.1, 77.48.0.?, 168.48.2.?, 1848.96.2.? $[ ]$
49686.g2 49686.g \( 2 \cdot 3 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.575972728$ $[1, 1, 0, -8453, 686379]$ \(y^2+xy=x^3+x^2-8453x+686379\) 7.24.0.a.2, 24.2.0.b.1, 91.48.0.?, 168.48.2.?, 2184.96.2.? $[(265, 4008)]$
49686.bj2 49686.bj \( 2 \cdot 3 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.609968670$ $[1, 0, 1, -173, -2026]$ \(y^2+xy+y=x^3-173x-2026\) 7.24.0.a.2, 24.2.0.b.1, 91.48.0.?, 168.48.2.?, 2184.96.2.? $[(842/7, 1191/7)]$
58800.j2 58800.j \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -20008, -2505488]$ \(y^2=x^3-x^2-20008x-2505488\) 7.24.0.a.2, 24.2.0.b.1, 140.48.0.?, 168.48.2.?, 840.96.2.? $[ ]$
58800.fk2 58800.fk \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -408, 7188]$ \(y^2=x^3+x^2-408x+7188\) 7.24.0.a.2, 24.2.0.b.1, 140.48.0.?, 168.48.2.?, 840.96.2.? $[ ]$
84966.cx2 84966.cx \( 2 \cdot 3 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $7.572360052$ $[1, 1, 1, -295, -4621]$ \(y^2+xy+y=x^3+x^2-295x-4621\) 7.24.0.a.2, 24.2.0.b.1, 119.48.0.?, 168.48.2.?, 2856.96.2.? $[(30643/14, 5134095/14)]$
84966.ds2 84966.ds \( 2 \cdot 3 \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $4.312800598$ $[1, 0, 0, -14456, 1541574]$ \(y^2+xy=x^3-14456x+1541574\) 7.24.0.a.2, 24.2.0.b.1, 119.48.0.?, 168.48.2.?, 2856.96.2.? $[(3879/10, 1000197/10)]$
106134.l2 106134.l \( 2 \cdot 3 \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.995445517$ $[1, 1, 0, -368, 6126]$ \(y^2+xy=x^3+x^2-368x+6126\) 7.24.0.a.2, 24.2.0.b.1, 133.48.0.?, 168.48.2.?, 3192.96.2.? $[(-65/2, 787/2)]$
106134.be2 106134.be \( 2 \cdot 3 \cdot 7^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $19.08292091$ $[1, 0, 1, -18058, -2155366]$ \(y^2+xy+y=x^3-18058x-2155366\) 7.24.0.a.2, 24.2.0.b.1, 133.48.0.?, 168.48.2.?, 3192.96.2.? $[(3592113834/1001, 213343451193566/1001)]$
106722.fk2 106722.fk \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -54473, 11298543]$ \(y^2+xy+y=x^3-x^2-54473x+11298543\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 231.48.0.?, 616.48.0.?, $\ldots$ $[ ]$
106722.ge2 106722.ge \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $8.399270223$ $[1, -1, 1, -1112, -32623]$ \(y^2+xy+y=x^3-x^2-1112x-32623\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 231.48.0.?, 616.48.0.?, $\ldots$ $[(12975/14, 1073969/14)]$
149058.gb2 149058.gb \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -1553, 54695]$ \(y^2+xy+y=x^3-x^2-1553x+54695\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 273.48.0.?, 728.48.0.?, $\ldots$ $[ ]$
149058.hh2 149058.hh \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $8.884850386$ $[1, -1, 1, -76082, -18608313]$ \(y^2+xy+y=x^3-x^2-76082x-18608313\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 273.48.0.?, 728.48.0.?, $\ldots$ $[(3402701/44, 6111824805/44)]$
155526.bv2 155526.bv \( 2 \cdot 3 \cdot 7^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $6.248044336$ $[1, 1, 1, -26461, -3831703]$ \(y^2+xy+y=x^3+x^2-26461x-3831703\) 7.24.0.a.2, 24.2.0.b.1, 161.48.0.?, 168.48.2.?, 3864.96.2.? $[(112909/20, 25746987/20)]$
155526.cx2 155526.cx \( 2 \cdot 3 \cdot 7^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $7.102363708$ $[1, 0, 0, -540, 11094]$ \(y^2+xy=x^3-540x+11094\) 7.24.0.a.2, 24.2.0.b.1, 161.48.0.?, 168.48.2.?, 3864.96.2.? $[(16349/28, 1854845/28)]$
176400.sw2 176400.sw \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $4.042805779$ $[0, 0, 0, -180075, 67828250]$ \(y^2=x^3-180075x+67828250\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 280.48.0.?, 420.48.0.?, $\ldots$ $[(589, 12888)]$
176400.sx2 176400.sx \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -3675, -197750]$ \(y^2=x^3-3675x-197750\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 280.48.0.?, 420.48.0.?, $\ldots$ $[ ]$
235200.x2 235200.x \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.491863138$ $[0, -1, 0, -80033, 20123937]$ \(y^2=x^3-x^2-80033x+20123937\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 210.48.0.?, 280.48.0.?, $\ldots$ $[(-359, 1568)]$
235200.no2 235200.no \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.964841292$ $[0, -1, 0, -1633, 59137]$ \(y^2=x^3-x^2-1633x+59137\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 280.48.0.?, 420.48.0.?, $\ldots$ $[(-19, 288)]$
235200.pp2 235200.pp \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $6.252971560$ $[0, 1, 0, -1633, -59137]$ \(y^2=x^3+x^2-1633x-59137\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 210.48.0.?, 280.48.0.?, $\ldots$ $[(3523/7, 153504/7)]$
235200.bby2 235200.bby \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $23.00510929$ $[0, 1, 0, -80033, -20123937]$ \(y^2=x^3+x^2-80033x-20123937\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 280.48.0.?, 420.48.0.?, $\ldots$ $[(83123203927/7161, 23547480116717152/7161)]$
247254.i2 247254.i \( 2 \cdot 3 \cdot 7^{2} \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -858, -22686]$ \(y^2+xy=x^3+x^2-858x-22686\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 203.48.0.?, 4872.96.2.? $[ ]$
247254.bm2 247254.bm \( 2 \cdot 3 \cdot 7^{2} \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -42068, 7655120]$ \(y^2+xy+y=x^3-42068x+7655120\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 203.48.0.?, 4872.96.2.? $[ ]$
254898.bq2 254898.bq \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) $1$ $\mathsf{trivial}$ $1.686034365$ $[1, -1, 0, -2655, 122107]$ \(y^2+xy=x^3-x^2-2655x+122107\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 357.48.0.?, 952.48.0.?, $\ldots$ $[(251, 3776)]$
254898.ct2 254898.ct \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 17^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -130104, -41622498]$ \(y^2+xy=x^3-x^2-130104x-41622498\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 357.48.0.?, 952.48.0.?, $\ldots$ $[ ]$
282534.ce2 282534.ce \( 2 \cdot 3 \cdot 7^{2} \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -981, 26865]$ \(y^2+xy+y=x^3+x^2-981x+26865\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 217.48.0.?, 5208.96.2.? $[ ]$
282534.da2 282534.da \( 2 \cdot 3 \cdot 7^{2} \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -48070, -9358966]$ \(y^2+xy=x^3-48070x-9358966\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 217.48.0.?, 5208.96.2.? $[ ]$
284592.cj2 284592.cj \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1976, -77328]$ \(y^2=x^3-x^2-1976x-77328\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 308.48.0.?, 1848.96.2.? $[ ]$
284592.jb2 284592.jb \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -96840, 26717172]$ \(y^2=x^3+x^2-96840x+26717172\) 7.24.0.a.2, 24.2.0.b.1, 168.48.2.?, 308.48.0.?, 1848.96.2.? $[ ]$
Next   displayed columns for results