# Properties

 Label 28224bs1 Conductor $28224$ Discriminant $-56184274944$ j-invariant $$-\frac{2401}{6}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -588, 12656])

gp: E = ellinit([0, 0, 0, -588, 12656])

magma: E := EllipticCurve([0, 0, 0, -588, 12656]);

$$y^2=x^3-588x+12656$$

## Mordell-Weil group structure

$\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(46, 288\right)$$ $\hat{h}(P)$ ≈ $0.71010884351007550505997423801$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(8,\pm 92)$$, $$(46,\pm 288)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$28224$$ = $2^{6} \cdot 3^{2} \cdot 7^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-56184274944$ = $-1 \cdot 2^{19} \cdot 3^{7} \cdot 7^{2}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{2401}{6}$$ = $-1 \cdot 2^{-1} \cdot 3^{-1} \cdot 7^{4}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.75054840413297012813350813518\dots$ Stable Faltings height: $-1.1627968692168882325408547894\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $0.71010884351007550505997423801\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.98723306421294312255029876086\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $8$  = $2^{2}\cdot2\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $5.6083434360252892017545824313752505433$

## Modular invariants

Modular form 28224.2.a.co

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{5} + 5 q^{11} - 4 q^{17} + 8 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 18432 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_{9}^{*}$ Additive 1 6 19 1
$3$ $2$ $I_{1}^{*}$ Additive -1 2 7 1
$7$ $1$ $II$ Additive -1 2 2 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$7$ 7B.6.3 7.24.0.2

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add add ordinary add ordinary ss ordinary ordinary ordinary ordinary ordinary ordinary ss ordinary ordinary - - 1 - 1 1,1 1 1 1 1 1 1 1,1 1 1 - - 0 - 0 0,0 0 0 0 0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 7.
Its isogeny class 28224bs consists of 2 curves linked by isogenies of degree 7.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.1176.1 $$\Z/2\Z$$ Not in database $6$ 6.0.33191424.2 $$\Z/2\Z \times \Z/2\Z$$ Not in database $6$ 6.6.232339968.1 $$\Z/7\Z$$ Not in database $8$ 8.2.341461686730752.5 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $14$ 14.0.60445864661523005177856.1 $$\Z/7\Z$$ Not in database $18$ 18.6.12542143794644656148447232.1 $$\Z/14\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.