Properties

Label 99450.dt
Number of curves $2$
Conductor $99450$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 99450.dt have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 99450.dt do not have complex multiplication.

Modular form 99450.2.a.dt

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 4 q^{7} + q^{8} + 2 q^{11} + q^{13} + 4 q^{14} + q^{16} - q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 99450.dt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
99450.dt1 99450dc1 \([1, -1, 1, -398030, 34725597]\) \(612241204436497/308834353152\) \(3517816303872000000\) \([2]\) \(1835008\) \(2.2513\) \(\Gamma_0(N)\)-optimal
99450.dt2 99450dc2 \([1, -1, 1, 1473970, 266853597]\) \(31091549545392623/20700995942016\) \(-235797281902026000000\) \([2]\) \(3670016\) \(2.5979\)