Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-222440x+324868011\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-222440xz^2+324868011z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3559035x+20787993686\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
Conductor: | $N$ | = | \( 98838 \) | = | $2 \cdot 3^{2} \cdot 17^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-44872941627802386432$ | = | $-1 \cdot 2^{27} \cdot 3^{6} \cdot 17^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( -\frac{69173457625}{2550136832} \) | = | $-1 \cdot 2^{-27} \cdot 5^{3} \cdot 19^{-1} \cdot 821^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4510824273194064667743518475$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.48516961095724358095196192010$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.054621266416818$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.583912172459624$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.16840156979740042953937355982$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 27 $ = $ 3^{3}\cdot1\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L(E,1)$ | ≈ | $4.5468423845298115975630861150 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 4.546842385 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.168402 \cdot 1.000000 \cdot 27}{1^2} \\ & \approx 4.546842385\end{aligned}$$
Modular invariants
Modular form 98838.2.a.bh
For more coefficients, see the Downloads section to the right.
Modular degree: | 2721600 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $27$ | $I_{27}$ | split multiplicative | -1 | 1 | 27 | 27 |
$3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$17$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 27.36.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 69768 = 2^{3} \cdot 3^{3} \cdot 17 \cdot 19 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 66352 & 24633 \\ 25415 & 664 \end{array}\right),\left(\begin{array}{rr} 19583 & 4029 \\ 10659 & 18376 \end{array}\right),\left(\begin{array}{rr} 28727 & 0 \\ 0 & 69767 \end{array}\right),\left(\begin{array}{rr} 69715 & 54 \\ 69714 & 55 \end{array}\right),\left(\begin{array}{rr} 52327 & 8262 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4132 & 4131 \\ 46665 & 61048 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 63946 & 63007 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right)$.
The torsion field $K:=\Q(E[69768])$ is a degree-$3599875555983360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/69768\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 49419 = 3^{2} \cdot 17^{2} \cdot 19 \) |
$3$ | additive | $2$ | \( 5491 = 17^{2} \cdot 19 \) |
$17$ | additive | $146$ | \( 342 = 2 \cdot 3^{2} \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 98838bl
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 38a2, its twist by $-51$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{17}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.152.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.3511808.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.17287210971.3 | \(\Z/3\Z\) | not in database |
$6$ | 6.6.4200792265953.3 | \(\Z/9\Z\) | not in database |
$6$ | 6.2.113509952.3 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.1218682337882726978361.1 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.488902119658837326815209871016872116224.1 | \(\Z/6\Z\) | not in database |
$18$ | 18.6.7015211047087528530600052624703093426591367168.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | ss | ord | ord | ord | add | split | ord | ord | ord | ord | ss | ord | ss |
$\lambda$-invariant(s) | 1 | - | 0,0 | 2 | 0 | 0 | - | 1 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 |
$\mu$-invariant(s) | 0 | - | 0,0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.