Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
38.a1 |
38a2 |
38.a |
38a |
$3$ |
$9$ |
\( 2 \cdot 19 \) |
\( - 2^{27} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
27.72.0.2 |
3B.1.2 |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$18$ |
$0.485169$ |
$-69173457625/2550136832$ |
$[1, 0, 1, -86, -2456]$ |
\(y^2+xy+y=x^3-86x-2456\) |
3.8.0-3.a.1.1, 9.24.0-9.a.1.1, 27.72.0-27.a.1.1, 152.2.0.?, 171.72.0.?, $\ldots$ |
304.c1 |
304b3 |
304.c |
304b |
$3$ |
$9$ |
\( 2^{4} \cdot 19 \) |
\( - 2^{39} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$432$ |
$1.178316$ |
$-69173457625/2550136832$ |
$[0, -1, 0, -1368, 157168]$ |
\(y^2=x^3-x^2-1368x+157168\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 27.36.0.a.1, 36.24.0-9.a.1.1, $\ldots$ |
342.e1 |
342a3 |
342.e |
342a |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 19 \) |
\( - 2^{27} \cdot 3^{6} \cdot 19 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.72.0.1 |
3B.1.1 |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$2$ |
$540$ |
$1.034475$ |
$-69173457625/2550136832$ |
$[1, -1, 1, -770, 66305]$ |
\(y^2+xy+y=x^3-x^2-770x+66305\) |
3.8.0-3.a.1.2, 9.24.0-9.a.1.2, 27.72.0-27.a.1.2, 152.2.0.?, 171.72.0.?, $\ldots$ |
722.e1 |
722e3 |
722.e |
722e |
$3$ |
$9$ |
\( 2 \cdot 19^{2} \) |
\( - 2^{27} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$0.086075062$ |
$1$ |
|
$10$ |
$6480$ |
$1.957390$ |
$-69173457625/2550136832$ |
$[1, 1, 1, -30873, 16782247]$ |
\(y^2+xy+y=x^3+x^2-30873x+16782247\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 27.36.0.a.1, 57.8.0-3.a.1.2, $\ldots$ |
950.d1 |
950e3 |
950.d |
950e |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2^{27} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$0.188760387$ |
$1$ |
|
$8$ |
$2592$ |
$1.289888$ |
$-69173457625/2550136832$ |
$[1, 1, 1, -2138, -306969]$ |
\(y^2+xy+y=x^3+x^2-2138x-306969\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 27.36.0.a.1, 45.24.0-9.a.1.2, $\ldots$ |
1216.e1 |
1216b3 |
1216.e |
1216b |
$3$ |
$9$ |
\( 2^{6} \cdot 19 \) |
\( - 2^{45} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$2.504328284$ |
$1$ |
|
$0$ |
$3456$ |
$1.524891$ |
$-69173457625/2550136832$ |
$[0, -1, 0, -5473, -1251871]$ |
\(y^2=x^3-x^2-5473x-1251871\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.1, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
1216.m1 |
1216o3 |
1216.m |
1216o |
$3$ |
$9$ |
\( 2^{6} \cdot 19 \) |
\( - 2^{45} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1.698405069$ |
$1$ |
|
$0$ |
$3456$ |
$1.524891$ |
$-69173457625/2550136832$ |
$[0, 1, 0, -5473, 1251871]$ |
\(y^2=x^3+x^2-5473x+1251871\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.3, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
1862.b1 |
1862b3 |
1862.b |
1862b |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 19 \) |
\( - 2^{27} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$6804$ |
$1.458124$ |
$-69173457625/2550136832$ |
$[1, 1, 0, -4190, 838132]$ |
\(y^2+xy=x^3+x^2-4190x+838132\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.2, 27.36.0.a.1, 63.24.0-9.a.1.2, $\ldots$ |
2736.n1 |
2736m3 |
2736.n |
2736m |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \) |
\( - 2^{39} \cdot 3^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$4.539488286$ |
$1$ |
|
$0$ |
$12960$ |
$1.727623$ |
$-69173457625/2550136832$ |
$[0, 0, 0, -12315, -4231222]$ |
\(y^2=x^3-12315x-4231222\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 27.36.0.a.1, 36.24.0-9.a.1.2, $\ldots$ |
4598.p1 |
4598n3 |
4598.p |
4598n |
$3$ |
$9$ |
\( 2 \cdot 11^{2} \cdot 19 \) |
\( - 2^{27} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$45144$ |
$1296$ |
$43$ |
$0.315644550$ |
$1$ |
|
$6$ |
$19440$ |
$1.684116$ |
$-69173457625/2550136832$ |
$[1, 0, 0, -10348, 3258256]$ |
\(y^2+xy=x^3-10348x+3258256\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.1, 99.24.0.?, $\ldots$ |
5776.m1 |
5776l3 |
5776.m |
5776l |
$3$ |
$9$ |
\( 2^{4} \cdot 19^{2} \) |
\( - 2^{39} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$8.273244123$ |
$1$ |
|
$0$ |
$155520$ |
$2.650536$ |
$-69173457625/2550136832$ |
$[0, 1, 0, -493968, -1075051756]$ |
\(y^2=x^3+x^2-493968x-1075051756\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.7, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
6422.h1 |
6422f3 |
6422.h |
6422f |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19 \) |
\( - 2^{27} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$36936$ |
$1.767645$ |
$-69173457625/2550136832$ |
$[1, 0, 0, -14453, -5380831]$ |
\(y^2+xy=x^3-14453x-5380831\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 39.8.0-3.a.1.2, 117.24.0.?, $\ldots$ |
6498.f1 |
6498j3 |
6498.f |
6498j |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{27} \cdot 3^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$8.882451747$ |
$1$ |
|
$0$ |
$194400$ |
$2.506695$ |
$-69173457625/2550136832$ |
$[1, -1, 0, -277857, -453398531]$ |
\(y^2+xy=x^3-x^2-277857x-453398531\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 27.36.0.a.1, 57.8.0-3.a.1.1, $\ldots$ |
7600.n1 |
7600l3 |
7600.n |
7600l |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \) |
\( - 2^{39} \cdot 5^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$62208$ |
$1.983036$ |
$-69173457625/2550136832$ |
$[0, 1, 0, -34208, 19577588]$ |
\(y^2=x^3+x^2-34208x+19577588\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 60.8.0-3.a.1.1, 152.2.0.?, $\ldots$ |
8550.m1 |
8550i3 |
8550.m |
8550i |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{27} \cdot 3^{6} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$5.646036841$ |
$1$ |
|
$0$ |
$77760$ |
$1.839195$ |
$-69173457625/2550136832$ |
$[1, -1, 0, -19242, 8268916]$ |
\(y^2+xy=x^3-x^2-19242x+8268916\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 27.36.0.a.1, 45.24.0-9.a.1.1, $\ldots$ |
10944.bf1 |
10944l3 |
10944.bf |
10944l |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{45} \cdot 3^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$103680$ |
$2.074196$ |
$-69173457625/2550136832$ |
$[0, 0, 0, -49260, 33849776]$ |
\(y^2=x^3-49260x+33849776\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.2, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
10944.bo1 |
10944cf3 |
10944.bo |
10944cf |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{45} \cdot 3^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$103680$ |
$2.074196$ |
$-69173457625/2550136832$ |
$[0, 0, 0, -49260, -33849776]$ |
\(y^2=x^3-49260x-33849776\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.4, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
10982.a1 |
10982b3 |
10982.a |
10982b |
$3$ |
$9$ |
\( 2 \cdot 17^{2} \cdot 19 \) |
\( - 2^{27} \cdot 17^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$69768$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$90720$ |
$1.901775$ |
$-69173457625/2550136832$ |
$[1, 1, 0, -24715, -12040387]$ |
\(y^2+xy=x^3+x^2-24715x-12040387\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 51.8.0-3.a.1.1, 152.2.0.?, $\ldots$ |
14896.x1 |
14896bd3 |
14896.x |
14896bd |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 19 \) |
\( - 2^{39} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$163296$ |
$2.151272$ |
$-69173457625/2550136832$ |
$[0, 1, 0, -67048, -53774540]$ |
\(y^2=x^3+x^2-67048x-53774540\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 84.8.0.?, 152.2.0.?, $\ldots$ |
16758.bg1 |
16758bc3 |
16758.bg |
16758bc |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{27} \cdot 3^{6} \cdot 7^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$204120$ |
$2.007431$ |
$-69173457625/2550136832$ |
$[1, -1, 1, -37715, -22667277]$ |
\(y^2+xy+y=x^3-x^2-37715x-22667277\) |
3.4.0.a.1, 9.12.0.a.1, 21.8.0-3.a.1.1, 27.36.0.a.1, 63.24.0-9.a.1.1, $\ldots$ |
18050.j1 |
18050e3 |
18050.j |
18050e |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{27} \cdot 5^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$933120$ |
$2.762108$ |
$-69173457625/2550136832$ |
$[1, 0, 1, -771826, 2099324548]$ |
\(y^2+xy+y=x^3-771826x+2099324548\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 120.8.0.?, 152.2.0.?, $\ldots$ |
20102.i1 |
20102b3 |
20102.i |
20102b |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 23^{2} \) |
\( - 2^{27} \cdot 19 \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$94392$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$224532$ |
$2.052917$ |
$-69173457625/2550136832$ |
$[1, 0, 1, -45241, 29788636]$ |
\(y^2+xy+y=x^3-45241x+29788636\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 69.8.0-3.a.1.1, 152.2.0.?, $\ldots$ |
23104.q1 |
23104bt3 |
23104.q |
23104bt |
$3$ |
$9$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{45} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$9.747721593$ |
$1$ |
|
$0$ |
$1244160$ |
$2.997108$ |
$-69173457625/2550136832$ |
$[0, -1, 0, -1975873, -8598438175]$ |
\(y^2=x^3-x^2-1975873x-8598438175\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.4, 27.36.0.a.1, 36.24.0-9.a.1.3, $\ldots$ |
23104.bj1 |
23104l3 |
23104.bj |
23104l |
$3$ |
$9$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{45} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$1244160$ |
$2.997108$ |
$-69173457625/2550136832$ |
$[0, 1, 0, -1975873, 8598438175]$ |
\(y^2=x^3+x^2-1975873x+8598438175\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 9.12.0.a.1, 18.24.0-9.a.1.2, 27.36.0.a.1, $\ldots$ |
30400.q1 |
30400br3 |
30400.q |
30400br |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 19 \) |
\( - 2^{45} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$4.519235595$ |
$1$ |
|
$2$ |
$497664$ |
$2.329609$ |
$-69173457625/2550136832$ |
$[0, -1, 0, -136833, 156757537]$ |
\(y^2=x^3-x^2-136833x+156757537\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 120.8.0.?, 152.2.0.?, $\ldots$ |
30400.bl1 |
30400d3 |
30400.bl |
30400d |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 19 \) |
\( - 2^{45} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$18.76155570$ |
$1$ |
|
$0$ |
$497664$ |
$2.329609$ |
$-69173457625/2550136832$ |
$[0, 1, 0, -136833, -156757537]$ |
\(y^2=x^3+x^2-136833x-156757537\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 120.8.0.?, 152.2.0.?, $\ldots$ |
31958.j1 |
31958h3 |
31958.j |
31958h |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 29^{2} \) |
\( - 2^{27} \cdot 19 \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$119016$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$412776$ |
$2.168819$ |
$-69173457625/2550136832$ |
$[1, 1, 1, -71923, -59749455]$ |
\(y^2+xy+y=x^3+x^2-71923x-59749455\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 87.8.0.?, 152.2.0.?, $\ldots$ |
35378.n1 |
35378o3 |
35378.n |
35378o |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{27} \cdot 7^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$2449440$ |
$2.930344$ |
$-69173457625/2550136832$ |
$[1, 0, 0, -1512778, -5760849116]$ |
\(y^2+xy=x^3-1512778x-5760849116\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 168.8.0.?, $\ldots$ |
36518.a1 |
36518a3 |
36518.a |
36518a |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 31^{2} \) |
\( - 2^{27} \cdot 19 \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$127224$ |
$1296$ |
$43$ |
$5.984886784$ |
$1$ |
|
$0$ |
$544320$ |
$2.202164$ |
$-69173457625/2550136832$ |
$[1, 1, 0, -82185, 72912709]$ |
\(y^2+xy=x^3+x^2-82185x+72912709\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 93.8.0.?, 152.2.0.?, $\ldots$ |
36784.j1 |
36784bh3 |
36784.j |
36784bh |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 19 \) |
\( - 2^{39} \cdot 11^{6} \cdot 19 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$45144$ |
$1296$ |
$43$ |
$9.282465821$ |
$1$ |
|
$4$ |
$466560$ |
$2.377266$ |
$-69173457625/2550136832$ |
$[0, -1, 0, -165568, -208528384]$ |
\(y^2=x^3-x^2-165568x-208528384\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 132.8.0.?, 152.2.0.?, $\ldots$ |
41382.p1 |
41382m3 |
41382.p |
41382m |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{27} \cdot 3^{6} \cdot 11^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$45144$ |
$1296$ |
$43$ |
$18.31980060$ |
$1$ |
|
$0$ |
$583200$ |
$2.233425$ |
$-69173457625/2550136832$ |
$[1, -1, 0, -93132, -87972912]$ |
\(y^2+xy=x^3-x^2-93132x-87972912\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.2, 99.24.0.?, $\ldots$ |
46550.cs1 |
46550ca3 |
46550.cs |
46550ca |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{27} \cdot 5^{6} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$143640$ |
$1296$ |
$43$ |
$0.948385633$ |
$1$ |
|
$4$ |
$979776$ |
$2.262844$ |
$-69173457625/2550136832$ |
$[1, 0, 0, -104763, 104976017]$ |
\(y^2+xy=x^3-104763x+104976017\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 105.8.0.?, 152.2.0.?, $\ldots$ |
51376.i1 |
51376v3 |
51376.i |
51376v |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{39} \cdot 13^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$4.871435753$ |
$1$ |
|
$0$ |
$886464$ |
$2.460793$ |
$-69173457625/2550136832$ |
$[0, -1, 0, -231248, 344373184]$ |
\(y^2=x^3-x^2-231248x+344373184\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 156.8.0.?, $\ldots$ |
51984.bn1 |
51984ci3 |
51984.bn |
51984ci |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{39} \cdot 3^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$4665600$ |
$3.199841$ |
$-69173457625/2550136832$ |
$[0, 0, 0, -4445715, 29021951698]$ |
\(y^2=x^3-4445715x+29021951698\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.8, 27.36.0.a.1, 72.24.0.?, $\ldots$ |
52022.l1 |
52022i3 |
52022.l |
52022i |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 37^{2} \) |
\( - 2^{27} \cdot 19 \cdot 37^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$151848$ |
$1296$ |
$43$ |
$1.317109903$ |
$1$ |
|
$10$ |
$933120$ |
$2.290630$ |
$-69173457625/2550136832$ |
$[1, 0, 0, -117078, -124039900]$ |
\(y^2+xy=x^3-117078x-124039900\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 111.8.0.?, 152.2.0.?, $\ldots$ |
57798.o1 |
57798h3 |
57798.o |
57798h |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{27} \cdot 3^{6} \cdot 13^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$1108080$ |
$2.316952$ |
$-69173457625/2550136832$ |
$[1, -1, 0, -130077, 145282437]$ |
\(y^2+xy=x^3-x^2-130077x+145282437\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 39.8.0-3.a.1.1, 117.24.0.?, $\ldots$ |
59584.z1 |
59584cl3 |
59584.z |
59584cl |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 19 \) |
\( - 2^{45} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$10.06996519$ |
$1$ |
|
$0$ |
$1306368$ |
$2.497845$ |
$-69173457625/2550136832$ |
$[0, -1, 0, -268193, -429928127]$ |
\(y^2=x^3-x^2-268193x-429928127\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 168.8.0.?, $\ldots$ |
59584.cf1 |
59584bg3 |
59584.cf |
59584bg |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 19 \) |
\( - 2^{45} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$12.95837681$ |
$1$ |
|
$0$ |
$1306368$ |
$2.497845$ |
$-69173457625/2550136832$ |
$[0, 1, 0, -268193, 429928127]$ |
\(y^2=x^3+x^2-268193x+429928127\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 168.8.0.?, $\ldots$ |
63878.b1 |
63878c3 |
63878.b |
63878c |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 41^{2} \) |
\( - 2^{27} \cdot 19 \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$168264$ |
$1296$ |
$43$ |
$16.63799061$ |
$1$ |
|
$0$ |
$1270080$ |
$2.341957$ |
$-69173457625/2550136832$ |
$[1, 1, 0, -143760, -168821504]$ |
\(y^2+xy=x^3+x^2-143760x-168821504\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 123.8.0.?, 152.2.0.?, $\ldots$ |
68400.cd1 |
68400ee3 |
68400.cd |
68400ee |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{39} \cdot 3^{6} \cdot 5^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$20520$ |
$1296$ |
$43$ |
$12.82358840$ |
$1$ |
|
$0$ |
$1866240$ |
$2.532341$ |
$-69173457625/2550136832$ |
$[0, 0, 0, -307875, -528902750]$ |
\(y^2=x^3-307875x-528902750\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 60.8.0-3.a.1.2, 152.2.0.?, $\ldots$ |
70262.g1 |
70262f3 |
70262.g |
70262f |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 43^{2} \) |
\( - 2^{27} \cdot 19 \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$176472$ |
$1296$ |
$43$ |
$0.745621090$ |
$1$ |
|
$4$ |
$1415232$ |
$2.365768$ |
$-69173457625/2550136832$ |
$[1, 1, 1, -158128, 194616849]$ |
\(y^2+xy+y=x^3+x^2-158128x+194616849\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 129.8.0.?, 152.2.0.?, $\ldots$ |
83942.c1 |
83942a3 |
83942.c |
83942a |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 47^{2} \) |
\( - 2^{27} \cdot 19 \cdot 47^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$192888$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$1907712$ |
$2.410244$ |
$-69173457625/2550136832$ |
$[1, 0, 1, -188916, 254207730]$ |
\(y^2+xy+y=x^3-188916x+254207730\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 141.8.0.?, 152.2.0.?, $\ldots$ |
87362.g1 |
87362q3 |
87362.g |
87362q |
$3$ |
$9$ |
\( 2 \cdot 11^{2} \cdot 19^{2} \) |
\( - 2^{27} \cdot 11^{6} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$45144$ |
$1296$ |
$43$ |
$23.11939971$ |
$1$ |
|
$0$ |
$6998400$ |
$3.156338$ |
$-69173457625/2550136832$ |
$[1, 1, 0, -3735635, -22355849171]$ |
\(y^2+xy=x^3+x^2-3735635x-22355849171\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$ |
87856.n1 |
87856g3 |
87856.n |
87856g |
$3$ |
$9$ |
\( 2^{4} \cdot 17^{2} \cdot 19 \) |
\( - 2^{39} \cdot 17^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$69768$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$2177280$ |
$2.594925$ |
$-69173457625/2550136832$ |
$[0, 1, 0, -395448, 769793876]$ |
\(y^2=x^3+x^2-395448x+769793876\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$ |
98838.bh1 |
98838bl3 |
98838.bh |
98838bl |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 17^{2} \cdot 19 \) |
\( - 2^{27} \cdot 3^{6} \cdot 17^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$69768$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$2721600$ |
$2.451084$ |
$-69173457625/2550136832$ |
$[1, -1, 1, -222440, 324868011]$ |
\(y^2+xy+y=x^3-x^2-222440x+324868011\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 51.8.0-3.a.1.2, 152.2.0.?, $\ldots$ |
106742.k1 |
106742g3 |
106742.k |
106742g |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 53^{2} \) |
\( - 2^{27} \cdot 19 \cdot 53^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$217512$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$2720952$ |
$2.470314$ |
$-69173457625/2550136832$ |
$[1, 1, 1, -240228, -364643867]$ |
\(y^2+xy+y=x^3+x^2-240228x-364643867\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 159.8.0.?, $\ldots$ |
114950.m1 |
114950m3 |
114950.m |
114950m |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{27} \cdot 5^{6} \cdot 11^{6} \cdot 19 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$225720$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$2799360$ |
$2.488834$ |
$-69173457625/2550136832$ |
$[1, 1, 0, -258700, 407282000]$ |
\(y^2+xy=x^3+x^2-258700x+407282000\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 165.8.0.?, $\ldots$ |
122018.f1 |
122018j3 |
122018.f |
122018j |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{27} \cdot 13^{6} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$53352$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$13296960$ |
$3.239864$ |
$-69173457625/2550136832$ |
$[1, 1, 0, -5217540, 36896684752]$ |
\(y^2+xy=x^3+x^2-5217540x+36896684752\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$ |
132278.g1 |
132278b3 |
132278.g |
132278b |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 59^{2} \) |
\( - 2^{27} \cdot 19 \cdot 59^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$242136$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$3673836$ |
$2.523937$ |
$-69173457625/2550136832$ |
$[1, 0, 0, -297698, 502871108]$ |
\(y^2+xy=x^3-297698x+502871108\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 152.2.0.?, 171.36.0.?, $\ldots$ |
134064.co1 |
134064bg3 |
134064.co |
134064bg |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{39} \cdot 3^{6} \cdot 7^{6} \cdot 19 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$28728$ |
$1296$ |
$43$ |
$8.847701190$ |
$1$ |
|
$0$ |
$4898880$ |
$2.700577$ |
$-69173457625/2550136832$ |
$[0, 0, 0, -603435, 1451309146]$ |
\(y^2=x^3-603435x+1451309146\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 84.8.0.?, 152.2.0.?, $\ldots$ |