Properties

Label 98800.bv
Number of curves $1$
Conductor $98800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 98800.bv1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(13\)\(1 - T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 98800.bv do not have complex multiplication.

Modular form 98800.2.a.bv

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - 3 q^{9} + 6 q^{11} + q^{13} - q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 98800.bv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
98800.bv1 98800q1 \([0, 0, 0, 25, -375]\) \(6912/247\) \(-61750000\) \([]\) \(20480\) \(0.17480\) \(\Gamma_0(N)\)-optimal