Properties

Label 97405.j
Number of curves $2$
Conductor $97405$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 97405.j have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 97405.j do not have complex multiplication.

Modular form 97405.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} + q^{7} - 3 q^{8} - 3 q^{9} - q^{10} - 4 q^{13} + q^{14} - q^{16} + 6 q^{17} - 3 q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 97405.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
97405.j1 97405e1 \([1, -1, 0, -19685, 1067600]\) \(476196576129/197225\) \(349396118225\) \([2]\) \(201600\) \(1.1769\) \(\Gamma_0(N)\)-optimal
97405.j2 97405e2 \([1, -1, 0, -16660, 1404585]\) \(-288673724529/311181605\) \(-551277195335405\) \([2]\) \(403200\) \(1.5235\)