Properties

Label 97344.ba
Number of curves $4$
Conductor $97344$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 97344.ba have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 97344.ba do not have complex multiplication.

Modular form 97344.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{5} - 4 q^{7} + 4 q^{11} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 97344.ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
97344.ba1 97344cj4 \([0, 0, 0, -196716, 33570160]\) \(7301384/3\) \(345906586681344\) \([2]\) \(589824\) \(1.7521\)  
97344.ba2 97344cj2 \([0, 0, 0, -14196, 351520]\) \(21952/9\) \(129714970005504\) \([2, 2]\) \(294912\) \(1.4056\)  
97344.ba3 97344cj1 \([0, 0, 0, -6591, -202124]\) \(140608/3\) \(675598802112\) \([2]\) \(147456\) \(1.0590\) \(\Gamma_0(N)\)-optimal
97344.ba4 97344cj3 \([0, 0, 0, 46644, 2566096]\) \(97336/81\) \(-9339477840396288\) \([2]\) \(589824\) \(1.7521\)