Properties

Label 97344.n
Number of curves $2$
Conductor $97344$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 97344.n have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 97344.n do not have complex multiplication.

Modular form 97344.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} - 2 q^{7} - 6 q^{11} + 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 97344.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
97344.n1 97344cq1 \([0, 0, 0, -35724, -4550416]\) \(-156116857/186624\) \(-6027283903021056\) \([]\) \(589824\) \(1.7218\) \(\Gamma_0(N)\)-optimal
97344.n2 97344cq2 \([0, 0, 0, 301236, 85080944]\) \(93603087383/150994944\) \(-4876593553930715136\) \([]\) \(1769472\) \(2.2711\)