sage: E = EllipticCurve([0, 0, 0, 0, -972])
gp: E = ellinit([0, 0, 0, 0, -972])
magma: E := EllipticCurve([0, 0, 0, 0, -972]);
oscar: E = elliptic_curve([0, 0, 0, 0, -972])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z \Z Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 13 , 35 ) (13, 35) ( 1 3 , 3 5 ) 2.9993679731363810537372497809 2.9993679731363810537372497809 2 . 9 9 9 3 6 7 9 7 3 1 3 6 3 8 1 0 5 3 7 3 7 2 4 9 7 8 0 9 ∞ \infty ∞
( 13 , ± 35 ) (13,\pm 35) ( 1 3 , ± 3 5 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
972 972 9 7 2 = 2 2 ⋅ 3 5 2^{2} \cdot 3^{5} 2 2 ⋅ 3 5
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 408146688 -408146688 − 4 0 8 1 4 6 6 8 8 = − 1 ⋅ 2 8 ⋅ 3 13 -1 \cdot 2^{8} \cdot 3^{13} − 1 ⋅ 2 8 ⋅ 3 1 3
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
0 0 0 = 0 0 0
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z [ ( 1 + − 3 ) / 2 ] \Z[(1+\sqrt{-3})/2] Z [ ( 1 + − 3 ) / 2 ]
(potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.33114400466904445696646789178 0.33114400466904445696646789178 0 . 3 3 1 1 4 4 0 0 4 6 6 9 0 4 4 4 5 6 9 6 6 4 6 7 8 9 1 7 8
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 1.3211174284280379149898691959 -1.3211174284280379149898691959 − 1 . 3 2 1 1 1 7 4 2 8 4 2 8 0 3 7 9 1 4 9 8 9 8 6 9 1 9 5 9
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.9657575392219093 3.9657575392219093 3 . 9 6 5 7 5 7 5 3 9 2 2 1 9 0 9 3
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 2.9993679731363810537372497809 2.9993679731363810537372497809 2 . 9 9 9 3 6 7 9 7 3 1 3 6 3 8 1 0 5 3 7 3 7 2 4 9 7 8 0 9
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.77165055024775881000452236660 0.77165055024775881000452236660 0 . 7 7 1 6 5 0 5 5 0 2 4 7 7 5 8 8 1 0 0 0 4 5 2 2 3 6 6 6 0
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 1 1 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 2.3144639468661935049158743280 2.3144639468661935049158743280 2 . 3 1 4 4 6 3 9 4 6 8 6 6 1 9 3 5 0 4 9 1 5 8 7 4 3 2 8 0
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.314463947 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.771651 ⋅ 2.999368 ⋅ 1 1 2 ≈ 2.314463947 \begin{aligned} 2.314463947 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.771651 \cdot 2.999368 \cdot 1}{1^2} \\ & \approx 2.314463947\end{aligned} 2 . 3 1 4 4 6 3 9 4 7 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 0 . 7 7 1 6 5 1 ⋅ 2 . 9 9 9 3 6 8 ⋅ 1 ≈ 2 . 3 1 4 4 6 3 9 4 7
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 0, 0, 0, -972]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 0, 0, 0, -972]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
972.2.a.a
q − 4 q 7 + 5 q 13 − 7 q 19 + O ( q 20 ) q - 4 q^{7} + 5 q^{13} - 7 q^{19} + O(q^{20}) q − 4 q 7 + 5 q 1 3 − 7 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 2 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
3.
Its isogeny class 972d
consists of 2 curves linked by isogenies of
degree 3.
The minimal quadratic twist of this elliptic curve is
972d1 , its twist by − 3 -3 − 3 .
The minimal sextic twist of this elliptic curve is
27.a4 ,
its sextic twist by − 12 -12 − 1 2 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
p p p
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
Reduction type
add
add
ss
ord
ss
ord
ss
ord
ss
ss
ord
ord
ss
ord
ss
λ \lambda λ -invariant(s)
-
-
5,1
1
1,1
3
1,1
1
1,1
1,1
1
1
1,1
1
1,1
μ \mu μ -invariant(s)
-
-
0,0
0
0,0
0
0,0
0
0,0
0,0
0
0
0,0
0
0,0
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.