Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
27.a3 |
27a1 |
27.a |
27a |
$4$ |
$27$ |
\( 3^{3} \) |
\( - 3^{9} \) |
$0$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.1944.55.37 |
3Cs.1.1 |
$1$ |
$1$ |
|
$2$ |
$1$ |
$-0.497158$ |
$0$ |
$[0, 0, 1, 0, -7]$ |
\(y^2+y=x^3-7\) |
27.a4 |
27a3 |
27.a |
27a |
$4$ |
$27$ |
\( 3^{3} \) |
\( - 3^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.1944.55.31 |
3Cs.1.1 |
$1$ |
$1$ |
|
$2$ |
$3$ |
$-1.046465$ |
$0$ |
$[0, 0, 1, 0, 0]$ |
\(y^2+y=x^3\) |
36.a3 |
36a3 |
36.a |
36a |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \) |
\( - 2^{4} \cdot 3^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2, 3$ |
16.192.9.83, 27.648.18.4 |
2B, 3B.1.2 |
$1$ |
$1$ |
|
$1$ |
$3$ |
$-0.266109$ |
$0$ |
$[0, 0, 0, 0, -27]$ |
\(y^2=x^3-27\) |
36.a4 |
36a1 |
36.a |
36a |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \) |
\( - 2^{4} \cdot 3^{3} \) |
$0$ |
$\Z/6\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2, 3$ |
16.192.9.83, 27.648.18.1 |
2B, 3B.1.1 |
$1$ |
$1$ |
|
$5$ |
$1$ |
$-0.815415$ |
$0$ |
$[0, 0, 0, 0, 1]$ |
\(y^2=x^3+1\) |
108.a1 |
108a2 |
108.a |
108a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{3} \) |
\( - 2^{8} \cdot 3^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.4 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$18$ |
$-0.035060$ |
$0$ |
$[0, 0, 0, 0, -108]$ |
\(y^2=x^3-108\) |
108.a2 |
108a1 |
108.a |
108a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{3} \) |
\( - 2^{8} \cdot 3^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$6$ |
$-0.584366$ |
$0$ |
$[0, 0, 0, 0, 4]$ |
\(y^2=x^3+4\) |
144.a3 |
144a1 |
144.a |
144a |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \) |
\( - 2^{4} \cdot 3^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.83 |
2B |
$1$ |
$1$ |
|
$1$ |
$4$ |
$-0.815415$ |
$0$ |
$[0, 0, 0, 0, -1]$ |
\(y^2=x^3-1\) |
144.a4 |
144a3 |
144.a |
144a |
$4$ |
$6$ |
\( 2^{4} \cdot 3^{2} \) |
\( - 2^{4} \cdot 3^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.83 |
2B |
$1$ |
$1$ |
|
$1$ |
$12$ |
$-0.266109$ |
$0$ |
$[0, 0, 0, 0, 27]$ |
\(y^2=x^3+27\) |
225.c1 |
225a2 |
225.c |
225a |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{9} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$5$ |
5.30.0.2 |
5Ns.2.1 |
$0.460920105$ |
$1$ |
|
$4$ |
$24$ |
$-0.228919$ |
$0$ |
$[0, 0, 1, 0, -34]$ |
\(y^2+y=x^3-34\) |
225.c2 |
225a1 |
225.c |
225a |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{3} \cdot 5^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$5$ |
5.30.0.2 |
5Ns.2.1 |
$0.153640035$ |
$1$ |
|
$6$ |
$8$ |
$-0.778225$ |
$0$ |
$[0, 0, 1, 0, 1]$ |
\(y^2+y=x^3+1\) |
225.d1 |
225b2 |
225.d |
225b |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{9} \cdot 5^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3, 5$ |
5.30.0.2, 27.648.18.4 |
5Ns.2.1, 3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$120$ |
$0.575800$ |
$0$ |
$[0, 0, 1, 0, -4219]$ |
\(y^2+y=x^3-4219\) |
225.d2 |
225b1 |
225.d |
225b |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \) |
\( - 3^{3} \cdot 5^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3, 5$ |
5.30.0.2, 27.648.18.1 |
5Ns.2.1, 3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$40$ |
$0.026494$ |
$0$ |
$[0, 0, 1, 0, 156]$ |
\(y^2+y=x^3+156\) |
243.a1 |
243a1 |
243.a |
243a |
$2$ |
$3$ |
\( 3^{5} \) |
\( - 3^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.1944.55.50 |
3B.1.2 |
$0.506367355$ |
$1$ |
|
$4$ |
$6$ |
$-0.863362$ |
$0$ |
$[0, 0, 1, 0, -1]$ |
\(y^2+y=x^3-1\) |
243.a2 |
243a2 |
243.a |
243a |
$2$ |
$3$ |
\( 3^{5} \) |
\( - 3^{11} \) |
$1$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.1944.55.44 |
3B.1.1 |
$1.519102066$ |
$1$ |
|
$6$ |
$18$ |
$-0.314056$ |
$0$ |
$[0, 0, 1, 0, 20]$ |
\(y^2+y=x^3+20\) |
243.b1 |
243b2 |
243.b |
243b |
$2$ |
$3$ |
\( 3^{5} \) |
\( - 3^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.1944.55.49 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$27$ |
$-0.130954$ |
$0$ |
$[0, 0, 1, 0, -61]$ |
\(y^2+y=x^3-61\) |
243.b2 |
243b1 |
243.b |
243b |
$2$ |
$3$ |
\( 3^{5} \) |
\( - 3^{7} \) |
$0$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.1944.55.43 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$9$ |
$-0.680261$ |
$0$ |
$[0, 0, 1, 0, 2]$ |
\(y^2+y=x^3+2\) |
432.d1 |
432b1 |
432.d |
432b |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{3} \) |
\( - 2^{8} \cdot 3^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
$0.450320685$ |
$1$ |
|
$4$ |
$24$ |
$-0.584366$ |
$0$ |
$[0, 0, 0, 0, -4]$ |
\(y^2=x^3-4\) |
432.d2 |
432b2 |
432.d |
432b |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{3} \) |
\( - 2^{8} \cdot 3^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
$0.150106895$ |
$1$ |
|
$8$ |
$72$ |
$-0.035060$ |
$0$ |
$[0, 0, 0, 0, 108]$ |
\(y^2=x^3+108\) |
432.e3 |
432a1 |
432.e |
432a |
$4$ |
$27$ |
\( 2^{4} \cdot 3^{3} \) |
\( - 2^{12} \cdot 3^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.972.55.16 |
3Cs |
$1$ |
$1$ |
|
$0$ |
$24$ |
$-0.353317$ |
$0$ |
$[0, 0, 0, 0, -16]$ |
\(y^2=x^3-16\) |
432.e4 |
432a3 |
432.e |
432a |
$4$ |
$27$ |
\( 2^{4} \cdot 3^{3} \) |
\( - 2^{12} \cdot 3^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.972.55.16 |
3Cs |
$1$ |
$1$ |
|
$0$ |
$72$ |
$0.195989$ |
$0$ |
$[0, 0, 0, 0, 432]$ |
\(y^2=x^3+432\) |
441.d1 |
441b2 |
441.d |
441b |
$2$ |
$3$ |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{9} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3, 7$ |
27.648.18.4, 7.84.1.1 |
3B.1.2, 7Ns.6.1.2 |
$0.298091926$ |
$1$ |
|
$6$ |
$72$ |
$0.151479$ |
$0$ |
$[0, 0, 1, 0, -331]$ |
\(y^2+y=x^3-331\) |
441.d2 |
441b1 |
441.d |
441b |
$2$ |
$3$ |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{3} \cdot 7^{4} \) |
$1$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3, 7$ |
27.648.18.1, 7.84.1.1 |
3B.1.1, 7Ns.6.1.2 |
$0.894275780$ |
$1$ |
|
$6$ |
$24$ |
$-0.397828$ |
$0$ |
$[0, 0, 1, 0, 12]$ |
\(y^2+y=x^3+12\) |
441.e1 |
441a1 |
441.e |
441a |
$2$ |
$3$ |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{3} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$7$ |
7.84.1.1 |
7Ns.6.1.2 |
$1$ |
$1$ |
|
$0$ |
$168$ |
$0.575128$ |
$0$ |
$[0, 0, 1, 0, -4202]$ |
\(y^2+y=x^3-4202\) |
441.e2 |
441a2 |
441.e |
441a |
$2$ |
$3$ |
\( 3^{2} \cdot 7^{2} \) |
\( - 3^{9} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$7$ |
7.84.1.1 |
7Ns.6.1.2 |
$1$ |
$1$ |
|
$0$ |
$504$ |
$1.124434$ |
$0$ |
$[0, 0, 1, 0, 113447]$ |
\(y^2+y=x^3+113447\) |
576.e3 |
576a3 |
576.e |
576a |
$4$ |
$6$ |
\( 2^{6} \cdot 3^{2} \) |
\( - 2^{10} \cdot 3^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.83 |
2B |
$1.959704032$ |
$1$ |
|
$5$ |
$96$ |
$0.080464$ |
$0$ |
$[0, 0, 0, 0, -216]$ |
\(y^2=x^3-216\) |
576.e4 |
576a1 |
576.e |
576a |
$4$ |
$6$ |
\( 2^{6} \cdot 3^{2} \) |
\( - 2^{10} \cdot 3^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.83 |
2B |
$0.653234677$ |
$1$ |
|
$7$ |
$32$ |
$-0.468842$ |
$0$ |
$[0, 0, 0, 0, 8]$ |
\(y^2=x^3+8\) |
576.f3 |
576e1 |
576.f |
576e |
$4$ |
$6$ |
\( 2^{6} \cdot 3^{2} \) |
\( - 2^{10} \cdot 3^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.83 |
2B |
$1$ |
$1$ |
|
$1$ |
$32$ |
$-0.468842$ |
$0$ |
$[0, 0, 0, 0, -8]$ |
\(y^2=x^3-8\) |
576.f4 |
576e3 |
576.f |
576e |
$4$ |
$6$ |
\( 2^{6} \cdot 3^{2} \) |
\( - 2^{10} \cdot 3^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.83 |
2B |
$1$ |
$1$ |
|
$1$ |
$96$ |
$0.080464$ |
$0$ |
$[0, 0, 0, 0, 216]$ |
\(y^2=x^3+216\) |
675.d1 |
675c2 |
675.d |
675c |
$2$ |
$3$ |
\( 3^{3} \cdot 5^{2} \) |
\( - 3^{9} \cdot 5^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.4 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$126$ |
$0.039321$ |
$0$ |
$[0, 0, 1, 0, -169]$ |
\(y^2+y=x^3-169\) |
675.d2 |
675c1 |
675.d |
675c |
$2$ |
$3$ |
\( 3^{3} \cdot 5^{2} \) |
\( - 3^{3} \cdot 5^{4} \) |
$0$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$42$ |
$-0.509985$ |
$0$ |
$[0, 0, 1, 0, 6]$ |
\(y^2+y=x^3+6\) |
675.e3 |
675a2 |
675.e |
675a |
$4$ |
$27$ |
\( 3^{3} \cdot 5^{2} \) |
\( - 3^{9} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.972.55.16 |
3Cs |
$1.216773260$ |
$1$ |
|
$4$ |
$144$ |
$0.307561$ |
$0$ |
$[0, 0, 1, 0, -844]$ |
\(y^2+y=x^3-844\) |
675.e4 |
675a1 |
675.e |
675a |
$4$ |
$27$ |
\( 3^{3} \cdot 5^{2} \) |
\( - 3^{3} \cdot 5^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.972.55.16 |
3Cs |
$0.405591086$ |
$1$ |
|
$4$ |
$48$ |
$-0.241745$ |
$0$ |
$[0, 0, 1, 0, 31]$ |
\(y^2+y=x^3+31\) |
675.f1 |
675e2 |
675.f |
675e |
$2$ |
$3$ |
\( 3^{3} \cdot 5^{2} \) |
\( - 3^{9} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
$1$ |
$1$ |
|
$0$ |
$630$ |
$0.844040$ |
$0$ |
$[0, 0, 1, 0, -21094]$ |
\(y^2+y=x^3-21094\) |
675.f2 |
675e1 |
675.f |
675e |
$2$ |
$3$ |
\( 3^{3} \cdot 5^{2} \) |
\( - 3^{3} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
$1$ |
$1$ |
|
$0$ |
$210$ |
$0.294734$ |
$0$ |
$[0, 0, 1, 0, 781]$ |
\(y^2+y=x^3+781\) |
900.d1 |
900c2 |
900.d |
900c |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.4 |
3B.1.2 |
$1.780231197$ |
$1$ |
|
$2$ |
$432$ |
$0.501419$ |
$0$ |
$[0, 0, 0, 0, -2700]$ |
\(y^2=x^3-2700\) |
900.d2 |
900c1 |
900.d |
900c |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{4} \) |
$1$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.1 |
3B.1.1 |
$0.593410399$ |
$1$ |
|
$12$ |
$144$ |
$-0.047887$ |
$0$ |
$[0, 0, 0, 0, 100]$ |
\(y^2=x^3+100\) |
900.f1 |
900a2 |
900.f |
900a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
$1$ |
$1$ |
|
$0$ |
$2160$ |
$1.306139$ |
$0$ |
$[0, 0, 0, 0, -337500]$ |
\(y^2=x^3-337500\) |
900.f2 |
900a1 |
900.f |
900a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
$1$ |
$1$ |
|
$0$ |
$720$ |
$0.756832$ |
$0$ |
$[0, 0, 0, 0, 12500]$ |
\(y^2=x^3+12500\) |
900.g3 |
900b3 |
900.g |
900b |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 5^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.83 |
2B |
$1$ |
$1$ |
|
$1$ |
$432$ |
$0.538610$ |
$0$ |
$[0, 0, 0, 0, -3375]$ |
\(y^2=x^3-3375\) |
900.g4 |
900b1 |
900.g |
900b |
$4$ |
$6$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.83 |
2B |
$1$ |
$1$ |
|
$1$ |
$144$ |
$-0.010696$ |
$0$ |
$[0, 0, 0, 0, 125]$ |
\(y^2=x^3+125\) |
972.a1 |
972d2 |
972.a |
972d |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{5} \) |
\( - 2^{8} \cdot 3^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.4 |
3B.1.2 |
$2.999367973$ |
$1$ |
|
$2$ |
$324$ |
$0.331144$ |
$0$ |
$[0, 0, 0, 0, -972]$ |
\(y^2=x^3-972\) |
972.a2 |
972d1 |
972.a |
972d |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{5} \) |
\( - 2^{8} \cdot 3^{7} \) |
$1$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.1 |
3B.1.1 |
$0.999789324$ |
$1$ |
|
$8$ |
$108$ |
$-0.218162$ |
$0$ |
$[0, 0, 0, 0, 36]$ |
\(y^2=x^3+36\) |
972.b1 |
972c2 |
972.b |
972c |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{5} \) |
\( - 2^{4} \cdot 3^{13} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.4 |
3B.1.2 |
$2.444086321$ |
$1$ |
|
$2$ |
$162$ |
$0.100095$ |
$0$ |
$[0, 0, 0, 0, -243]$ |
\(y^2=x^3-243\) |
972.b2 |
972c1 |
972.b |
972c |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{5} \) |
\( - 2^{4} \cdot 3^{7} \) |
$1$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.1 |
3B.1.1 |
$0.814695440$ |
$1$ |
|
$10$ |
$54$ |
$-0.449211$ |
$0$ |
$[0, 0, 0, 0, 9]$ |
\(y^2=x^3+9\) |
972.c1 |
972a1 |
972.c |
972a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{5} \) |
\( - 2^{8} \cdot 3^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.4 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$54$ |
$-0.401264$ |
$0$ |
$[0, 0, 0, 0, -12]$ |
\(y^2=x^3-12\) |
972.c2 |
972a2 |
972.c |
972a |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{5} \) |
\( - 2^{8} \cdot 3^{11} \) |
$0$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$162$ |
$0.148042$ |
$0$ |
$[0, 0, 0, 0, 324]$ |
\(y^2=x^3+324\) |
972.d1 |
972b1 |
972.d |
972b |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{5} \) |
\( - 2^{4} \cdot 3^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.4 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$54$ |
$-0.632313$ |
$0$ |
$[0, 0, 0, 0, -3]$ |
\(y^2=x^3-3\) |
972.d2 |
972b2 |
972.d |
972b |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{5} \) |
\( - 2^{4} \cdot 3^{11} \) |
$0$ |
$\Z/3\Z$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$3$ |
27.648.18.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$162$ |
$-0.083007$ |
$0$ |
$[0, 0, 0, 0, 81]$ |
\(y^2=x^3+81\) |
1089.e1 |
1089b1 |
1089.e |
1089b |
$2$ |
$3$ |
\( 3^{2} \cdot 11^{2} \) |
\( - 3^{3} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$11$ |
11.165.5.1 |
11Nn.1.4 |
$1$ |
$1$ |
|
$0$ |
$1232$ |
$0.951781$ |
$0$ |
$[0, 0, 1, 0, -40263]$ |
\(y^2+y=x^3-40263\) |
1089.e2 |
1089b2 |
1089.e |
1089b |
$2$ |
$3$ |
\( 3^{2} \cdot 11^{2} \) |
\( - 3^{9} \cdot 11^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q(\sqrt{-3})$ |
$-3$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$11$ |
11.165.5.1 |
11Nn.1.4 |
$1$ |
$1$ |
|
$0$ |
$3696$ |
$1.501087$ |
$0$ |
$[0, 0, 1, 0, 1087094]$ |
\(y^2+y=x^3+1087094\) |