Properties

Label 972d
Number of curves 22
Conductor 972972
CM Q(3)\Q(\sqrt{-3})
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 972d have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+5T2 1 + 5 T^{2} 1.5.a
77 15T+7T2 1 - 5 T + 7 T^{2} 1.7.af
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 15T+13T2 1 - 5 T + 13 T^{2} 1.13.af
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 1+7T+19T2 1 + 7 T + 19 T^{2} 1.19.h
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 972d has complex multiplication by an order in the imaginary quadratic field Q(3)\Q(\sqrt{-3}) .

Modular form 972.2.a.d

Copy content sage:E.q_eigenform(10)
 
q4q7+5q137q19+O(q20)q - 4 q^{7} + 5 q^{13} - 7 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 972d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
972.a2 972d1 [0,0,0,0,36][0, 0, 0, 0, 36] 00 559872-559872 [3][3] 108108 0.21816-0.21816 Γ0(N)\Gamma_0(N)-optimal 3-3
972.a1 972d2 [0,0,0,0,972][0, 0, 0, 0, -972] 00 408146688-408146688 [][] 324324 0.331140.33114   3-3