Show commands: SageMath
Rank
The elliptic curves in class 972d have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
Each elliptic curve in class 972d has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 972.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 972d
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
972.a2 | 972d1 | \([0, 0, 0, 0, 36]\) | \(0\) | \(-559872\) | \([3]\) | \(108\) | \(-0.21816\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
972.a1 | 972d2 | \([0, 0, 0, 0, -972]\) | \(0\) | \(-408146688\) | \([]\) | \(324\) | \(0.33114\) | \(-3\) |