sage:E = EllipticCurve("d1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 972d have
rank 1.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 2 | 1 |
| 3 | 1 |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 5 |
1+5T2 |
1.5.a
|
| 7 |
1−5T+7T2 |
1.7.af
|
| 11 |
1+11T2 |
1.11.a
|
| 13 |
1−5T+13T2 |
1.13.af
|
| 17 |
1+17T2 |
1.17.a
|
| 19 |
1+7T+19T2 |
1.19.h
|
| 23 |
1+23T2 |
1.23.a
|
| 29 |
1+29T2 |
1.29.a
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
Each elliptic curve in class 972d has complex multiplication by an order in the imaginary quadratic field
Q(−3).
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 972d
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
CM discriminant |
| 972.a2 |
972d1 |
[0,0,0,0,36] |
0 |
−559872 |
[3] |
108 |
−0.21816
|
Γ0(N)-optimal |
−3 |
| 972.a1 |
972d2 |
[0,0,0,0,−972] |
0 |
−408146688 |
[] |
324 |
0.33114
|
|
−3 |