Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2+3463x-47599\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z+3463xz^2-47599z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+280476x-33858216\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 97216 \) | = | $2^{6} \cdot 7^{2} \cdot 31$ |
|
| Discriminant: | $\Delta$ | = | $-3588998511616$ | = | $-1 \cdot 2^{10} \cdot 7^{6} \cdot 31^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{38112512}{29791} \) | = | $2^{8} \cdot 31^{-3} \cdot 53^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0970732047147567354252718018$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.45350452027952100830843133780$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.887542930342586$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1400920743279284$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.43949572105463957949373389658$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 3 $ = $ 1\cdot1\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.3184871631639187384812016897 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.318487163 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.439496 \cdot 1.000000 \cdot 3}{1^2} \\ & \approx 1.318487163\end{aligned}$$
Modular invariants
Modular form 97216.2.a.bw
For more coefficients, see the Downloads section to the right.
| Modular degree: | 217728 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | -1 | 6 | 10 | 0 |
| $7$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $31$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5208 = 2^{3} \cdot 3 \cdot 7 \cdot 31 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 5081 & 2226 \\ 735 & 1469 \end{array}\right),\left(\begin{array}{rr} 3907 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1646 & 777 \\ 847 & 2983 \end{array}\right),\left(\begin{array}{rr} 5203 & 6 \\ 5202 & 7 \end{array}\right),\left(\begin{array}{rr} 925 & 2982 \\ 924 & 2983 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4463 & 0 \\ 0 & 5207 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 2603 & 0 \\ 0 & 5207 \end{array}\right)$.
The torsion field $K:=\Q(E[5208])$ is a degree-$8293869158400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5208\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 1519 = 7^{2} \cdot 31 \) |
| $3$ | good | $2$ | \( 3136 = 2^{6} \cdot 7^{2} \) |
| $7$ | additive | $26$ | \( 1984 = 2^{6} \cdot 31 \) |
| $31$ | split multiplicative | $32$ | \( 3136 = 2^{6} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 97216.bw
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 124.a2, its twist by $56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-42}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.31.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.29791.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.512096256.2 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.4556708352.5 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.2082027303380790572132440903260318049098748919808.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.2.119185923249042881254871863809540096.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ord | add | ord | ord | ord | ord | ord | ss | split | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 0 | 0 | - | 0 | 0 | 0 | 2 | 0 | 0,0 | 1 | 0 | 0 | 0 | 0,0 |
| $\mu$-invariant(s) | - | 1 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.