| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 124.a2 |
124a2 |
124.a |
124a |
$2$ |
$3$ |
\( 2^{2} \cdot 31 \) |
\( - 2^{4} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$186$ |
$16$ |
$0$ |
$0.173510231$ |
$1$ |
|
$6$ |
$18$ |
$-0.222456$ |
$38112512/29791$ |
$0.88754$ |
$4.19657$ |
$[0, 1, 0, 18, -11]$ |
\(y^2=x^3+x^2+18x-11\) |
3.8.0-3.a.1.1, 62.2.0.a.1, 186.16.0.? |
$[(9, 31)]$ |
| 496.d2 |
496d2 |
496.d |
496d |
$2$ |
$3$ |
\( 2^{4} \cdot 31 \) |
\( - 2^{4} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$372$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$72$ |
$-0.222456$ |
$38112512/29791$ |
$0.88754$ |
$3.25923$ |
$[0, -1, 0, 18, 11]$ |
\(y^2=x^3-x^2+18x+11\) |
3.4.0.a.1, 12.8.0-3.a.1.2, 62.2.0.a.1, 186.8.0.?, 372.16.0.? |
$[ ]$ |
| 1116.f2 |
1116e2 |
1116.f |
1116e |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3^{6} \cdot 31^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$186$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$432$ |
$0.326851$ |
$38112512/29791$ |
$0.88754$ |
$3.82192$ |
$[0, 0, 0, 159, 457]$ |
\(y^2=x^3+159x+457\) |
3.8.0-3.a.1.2, 62.2.0.a.1, 186.16.0.? |
$[ ]$ |
| 1984.c2 |
1984h2 |
1984.c |
1984h |
$2$ |
$3$ |
\( 2^{6} \cdot 31 \) |
\( - 2^{10} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$576$ |
$0.124118$ |
$38112512/29791$ |
$0.88754$ |
$3.21190$ |
$[0, 1, 0, 71, 159]$ |
\(y^2=x^3+x^2+71x+159\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 62.2.0.a.1, 186.8.0.?, 744.16.0.? |
$[ ]$ |
| 1984.l2 |
1984f2 |
1984.l |
1984f |
$2$ |
$3$ |
\( 2^{6} \cdot 31 \) |
\( - 2^{10} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$576$ |
$0.124118$ |
$38112512/29791$ |
$0.88754$ |
$3.21190$ |
$[0, -1, 0, 71, -159]$ |
\(y^2=x^3-x^2+71x-159\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 62.2.0.a.1, 186.8.0.?, 744.16.0.? |
$[ ]$ |
| 3100.f2 |
3100e2 |
3100.f |
3100e |
$2$ |
$3$ |
\( 2^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{4} \cdot 5^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$930$ |
$16$ |
$0$ |
$0.669173736$ |
$1$ |
|
$4$ |
$1944$ |
$0.582264$ |
$38112512/29791$ |
$0.88754$ |
$3.71746$ |
$[0, -1, 0, 442, -2263]$ |
\(y^2=x^3-x^2+442x-2263\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 62.2.0.a.1, 186.8.0.?, 930.16.0.? |
$[(16, 93)]$ |
| 3844.c2 |
3844c2 |
3844.c |
3844c |
$2$ |
$3$ |
\( 2^{2} \cdot 31^{2} \) |
\( - 2^{4} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$186$ |
$16$ |
$0$ |
$6.080844599$ |
$1$ |
|
$0$ |
$17280$ |
$1.494537$ |
$38112512/29791$ |
$0.88754$ |
$4.94684$ |
$[0, -1, 0, 16978, 498581]$ |
\(y^2=x^3-x^2+16978x+498581\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 62.2.0.a.1, 93.8.0.?, 186.16.0.? |
$[(9151/7, 1092657/7)]$ |
| 4464.w2 |
4464u2 |
4464.w |
4464u |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$372$ |
$16$ |
$0$ |
$2.286978934$ |
$1$ |
|
$2$ |
$1728$ |
$0.326851$ |
$38112512/29791$ |
$0.88754$ |
$3.19145$ |
$[0, 0, 0, 159, -457]$ |
\(y^2=x^3+159x-457\) |
3.4.0.a.1, 12.8.0-3.a.1.1, 62.2.0.a.1, 186.8.0.?, 372.16.0.? |
$[(22, 117)]$ |
| 6076.b2 |
6076a2 |
6076.b |
6076a |
$2$ |
$3$ |
\( 2^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{4} \cdot 7^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1302$ |
$16$ |
$0$ |
$8.407400324$ |
$1$ |
|
$0$ |
$6804$ |
$0.750500$ |
$38112512/29791$ |
$0.88754$ |
$3.66204$ |
$[0, -1, 0, 866, 5517]$ |
\(y^2=x^3-x^2+866x+5517\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 62.2.0.a.1, 186.8.0.?, 1302.16.0.? |
$[(999/11, 152697/11)]$ |
| 12400.d2 |
12400p2 |
12400.d |
12400p |
$2$ |
$3$ |
\( 2^{4} \cdot 5^{2} \cdot 31 \) |
\( - 2^{4} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1860$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7776$ |
$0.582264$ |
$38112512/29791$ |
$0.88754$ |
$3.17070$ |
$[0, 1, 0, 442, 2263]$ |
\(y^2=x^3+x^2+442x+2263\) |
3.4.0.a.1, 60.8.0-3.a.1.1, 62.2.0.a.1, 186.8.0.?, 1860.16.0.? |
$[ ]$ |
| 15004.a2 |
15004d2 |
15004.a |
15004d |
$2$ |
$3$ |
\( 2^{2} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{6} \cdot 31^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2046$ |
$16$ |
$0$ |
$0.428543353$ |
$1$ |
|
$18$ |
$19440$ |
$0.976492$ |
$38112512/29791$ |
$0.88754$ |
$3.59981$ |
$[0, 1, 0, 2138, 23241]$ |
\(y^2=x^3+x^2+2138x+23241\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 62.2.0.a.1, 186.8.0.?, 2046.16.0.? |
$[(238, 3751), (-4, 121)]$ |
| 15376.d2 |
15376y2 |
15376.d |
15376y |
$2$ |
$3$ |
\( 2^{4} \cdot 31^{2} \) |
\( - 2^{4} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$372$ |
$16$ |
$0$ |
$1.339558957$ |
$1$ |
|
$0$ |
$69120$ |
$1.494537$ |
$38112512/29791$ |
$0.88754$ |
$4.23550$ |
$[0, 1, 0, 16978, -498581]$ |
\(y^2=x^3+x^2+16978x-498581\) |
3.4.0.a.1, 12.8.0-3.a.1.4, 62.2.0.a.1, 186.8.0.?, 372.16.0.? |
$[(679/3, 29791/3)]$ |
| 17856.f2 |
17856bh2 |
17856.f |
17856bh |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 31 \) |
\( - 2^{10} \cdot 3^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$0.607906735$ |
$1$ |
|
$2$ |
$13824$ |
$0.673425$ |
$38112512/29791$ |
$0.88754$ |
$3.16434$ |
$[0, 0, 0, 636, 3656]$ |
\(y^2=x^3+636x+3656\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 62.2.0.a.1, 186.8.0.?, 744.16.0.? |
$[(37, 279)]$ |
| 17856.i2 |
17856bw2 |
17856.i |
17856bw |
$2$ |
$3$ |
\( 2^{6} \cdot 3^{2} \cdot 31 \) |
\( - 2^{10} \cdot 3^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$3.114500838$ |
$1$ |
|
$2$ |
$13824$ |
$0.673425$ |
$38112512/29791$ |
$0.88754$ |
$3.16434$ |
$[0, 0, 0, 636, -3656]$ |
\(y^2=x^3+636x-3656\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 62.2.0.a.1, 186.8.0.?, 744.16.0.? |
$[(53, 423)]$ |
| 20956.b2 |
20956c2 |
20956.b |
20956c |
$2$ |
$3$ |
\( 2^{2} \cdot 13^{2} \cdot 31 \) |
\( - 2^{4} \cdot 13^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2418$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$41472$ |
$1.060019$ |
$38112512/29791$ |
$0.88754$ |
$3.57967$ |
$[0, 1, 0, 2986, -36191]$ |
\(y^2=x^3+x^2+2986x-36191\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 62.2.0.a.1, 186.8.0.?, 2418.16.0.? |
$[ ]$ |
| 24304.g2 |
24304w2 |
24304.g |
24304w |
$2$ |
$3$ |
\( 2^{4} \cdot 7^{2} \cdot 31 \) |
\( - 2^{4} \cdot 7^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2604$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27216$ |
$0.750500$ |
$38112512/29791$ |
$0.88754$ |
$3.15932$ |
$[0, 1, 0, 866, -5517]$ |
\(y^2=x^3+x^2+866x-5517\) |
3.4.0.a.1, 62.2.0.a.1, 84.8.0.?, 186.8.0.?, 2604.16.0.? |
$[ ]$ |
| 27900.l2 |
27900k2 |
27900.l |
27900k |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$930$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$46656$ |
$1.131569$ |
$38112512/29791$ |
$0.88754$ |
$3.56346$ |
$[0, 0, 0, 3975, 57125]$ |
\(y^2=x^3+3975x+57125\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 62.2.0.a.1, 186.8.0.?, 930.16.0.? |
$[ ]$ |
| 34596.q2 |
34596o2 |
34596.q |
34596o |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 31^{2} \) |
\( - 2^{4} \cdot 3^{6} \cdot 31^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$186$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$414720$ |
$2.043846$ |
$38112512/29791$ |
$0.88754$ |
$4.53756$ |
$[0, 0, 0, 152799, -13614487]$ |
\(y^2=x^3+152799x-13614487\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 62.2.0.a.1, 93.8.0.?, 186.16.0.? |
$[ ]$ |
| 35836.e2 |
35836c2 |
35836.e |
35836c |
$2$ |
$3$ |
\( 2^{2} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3162$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$82944$ |
$1.194151$ |
$38112512/29791$ |
$0.88754$ |
$3.55001$ |
$[0, -1, 0, 5106, -84859]$ |
\(y^2=x^3-x^2+5106x-84859\) |
3.4.0.a.1, 51.8.0-3.a.1.1, 62.2.0.a.1, 186.8.0.?, 3162.16.0.? |
$[ ]$ |
| 44764.d2 |
44764b2 |
44764.d |
44764b |
$2$ |
$3$ |
\( 2^{2} \cdot 19^{2} \cdot 31 \) |
\( - 2^{4} \cdot 19^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3534$ |
$16$ |
$0$ |
$3.987860368$ |
$1$ |
|
$2$ |
$129276$ |
$1.249763$ |
$38112512/29791$ |
$0.88754$ |
$3.53859$ |
$[0, -1, 0, 6378, 113969]$ |
\(y^2=x^3-x^2+6378x+113969\) |
3.4.0.a.1, 57.8.0-3.a.1.2, 62.2.0.a.1, 186.8.0.?, 3534.16.0.? |
$[(-16, 87)]$ |
| 49600.l2 |
49600z2 |
49600.l |
49600z |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 31 \) |
\( - 2^{10} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$62208$ |
$0.928837$ |
$38112512/29791$ |
$0.88754$ |
$3.14881$ |
$[0, 1, 0, 1767, -16337]$ |
\(y^2=x^3+x^2+1767x-16337\) |
3.4.0.a.1, 62.2.0.a.1, 120.8.0.?, 186.8.0.?, 3720.16.0.? |
$[ ]$ |
| 49600.cm2 |
49600bs2 |
49600.cm |
49600bs |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 31 \) |
\( - 2^{10} \cdot 5^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$62208$ |
$0.928837$ |
$38112512/29791$ |
$0.88754$ |
$3.14881$ |
$[0, -1, 0, 1767, 16337]$ |
\(y^2=x^3-x^2+1767x+16337\) |
3.4.0.a.1, 62.2.0.a.1, 120.8.0.?, 186.8.0.?, 3720.16.0.? |
$[ ]$ |
| 54684.b2 |
54684p2 |
54684.b |
54684p |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3^{6} \cdot 7^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1302$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$163296$ |
$1.299807$ |
$38112512/29791$ |
$0.88754$ |
$3.52870$ |
$[0, 0, 0, 7791, -156751]$ |
\(y^2=x^3+7791x-156751\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 62.2.0.a.1, 186.8.0.?, 1302.16.0.? |
$[ ]$ |
| 60016.j2 |
60016k2 |
60016.j |
60016k |
$2$ |
$3$ |
\( 2^{4} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 11^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4092$ |
$16$ |
$0$ |
$5.793956433$ |
$1$ |
|
$0$ |
$77760$ |
$0.976492$ |
$38112512/29791$ |
$0.88754$ |
$3.14623$ |
$[0, -1, 0, 2138, -23241]$ |
\(y^2=x^3-x^2+2138x-23241\) |
3.4.0.a.1, 62.2.0.a.1, 132.8.0.?, 186.8.0.?, 4092.16.0.? |
$[(3525/2, 209451/2)]$ |
| 61504.k2 |
61504bb2 |
61504.k |
61504bb |
$2$ |
$3$ |
\( 2^{6} \cdot 31^{2} \) |
\( - 2^{10} \cdot 31^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$552960$ |
$1.841112$ |
$38112512/29791$ |
$0.88754$ |
$4.08017$ |
$[0, 1, 0, 67911, 4056559]$ |
\(y^2=x^3+x^2+67911x+4056559\) |
3.4.0.a.1, 24.8.0-3.a.1.5, 62.2.0.a.1, 186.8.0.?, 744.16.0.? |
$[ ]$ |
| 61504.cc2 |
61504ca2 |
61504.cc |
61504ca |
$2$ |
$3$ |
\( 2^{6} \cdot 31^{2} \) |
\( - 2^{10} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$744$ |
$16$ |
$0$ |
$15.26269240$ |
$1$ |
|
$0$ |
$552960$ |
$1.841112$ |
$38112512/29791$ |
$0.88754$ |
$4.08017$ |
$[0, -1, 0, 67911, -4056559]$ |
\(y^2=x^3-x^2+67911x-4056559\) |
3.4.0.a.1, 24.8.0-3.a.1.7, 62.2.0.a.1, 186.8.0.?, 744.16.0.? |
$[(990946840/2043, 42969660369857/2043)]$ |
| 65596.a2 |
65596d2 |
65596.a |
65596d |
$2$ |
$3$ |
\( 2^{2} \cdot 23^{2} \cdot 31 \) |
\( - 2^{4} \cdot 23^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4278$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$213840$ |
$1.345291$ |
$38112512/29791$ |
$0.88754$ |
$3.52003$ |
$[0, 1, 0, 9346, 209053]$ |
\(y^2=x^3+x^2+9346x+209053\) |
3.4.0.a.1, 62.2.0.a.1, 69.8.0-3.a.1.1, 186.8.0.?, 4278.16.0.? |
$[ ]$ |
| 83824.bi2 |
83824bc2 |
83824.bi |
83824bc |
$2$ |
$3$ |
\( 2^{4} \cdot 13^{2} \cdot 31 \) |
\( - 2^{4} \cdot 13^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4836$ |
$16$ |
$0$ |
$3.607462686$ |
$1$ |
|
$0$ |
$165888$ |
$1.060019$ |
$38112512/29791$ |
$0.88754$ |
$3.14192$ |
$[0, -1, 0, 2986, 36191]$ |
\(y^2=x^3-x^2+2986x+36191\) |
3.4.0.a.1, 62.2.0.a.1, 156.8.0.?, 186.8.0.?, 4836.16.0.? |
$[(-935/9, 5239/9)]$ |
| 96100.e2 |
96100f2 |
96100.e |
96100f |
$2$ |
$3$ |
\( 2^{2} \cdot 5^{2} \cdot 31^{2} \) |
\( - 2^{4} \cdot 5^{6} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$930$ |
$16$ |
$0$ |
$6.024729829$ |
$1$ |
|
$0$ |
$1866240$ |
$2.299255$ |
$38112512/29791$ |
$0.88754$ |
$4.40064$ |
$[0, 1, 0, 424442, 63171513]$ |
\(y^2=x^3+x^2+424442x+63171513\) |
3.4.0.a.1, 30.8.0-3.a.1.2, 62.2.0.a.1, 186.8.0.?, 465.8.0.?, $\ldots$ |
$[(4094/5, 1463603/5)]$ |
| 97216.f2 |
97216l2 |
97216.f |
97216l |
$2$ |
$3$ |
\( 2^{6} \cdot 7^{2} \cdot 31 \) |
\( - 2^{10} \cdot 7^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5208$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$217728$ |
$1.097073$ |
$38112512/29791$ |
$0.88754$ |
$3.14009$ |
$[0, 1, 0, 3463, 47599]$ |
\(y^2=x^3+x^2+3463x+47599\) |
3.4.0.a.1, 62.2.0.a.1, 168.8.0.?, 186.8.0.?, 5208.16.0.? |
$[ ]$ |
| 97216.bw2 |
97216cf2 |
97216.bw |
97216cf |
$2$ |
$3$ |
\( 2^{6} \cdot 7^{2} \cdot 31 \) |
\( - 2^{10} \cdot 7^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5208$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$217728$ |
$1.097073$ |
$38112512/29791$ |
$0.88754$ |
$3.14009$ |
$[0, -1, 0, 3463, -47599]$ |
\(y^2=x^3-x^2+3463x-47599\) |
3.4.0.a.1, 62.2.0.a.1, 168.8.0.?, 186.8.0.?, 5208.16.0.? |
$[ ]$ |
| 104284.h2 |
104284c2 |
104284.h |
104284c |
$2$ |
$3$ |
\( 2^{2} \cdot 29^{2} \cdot 31 \) |
\( - 2^{4} \cdot 29^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5394$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$453600$ |
$1.461193$ |
$38112512/29791$ |
$0.88754$ |
$3.49917$ |
$[0, -1, 0, 14858, -417759]$ |
\(y^2=x^3-x^2+14858x-417759\) |
3.4.0.a.1, 62.2.0.a.1, 87.8.0.?, 186.8.0.?, 5394.16.0.? |
$[ ]$ |
| 111600.ck2 |
111600dt2 |
111600.ck |
111600dt |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1860$ |
$16$ |
$0$ |
$7.003847818$ |
$1$ |
|
$0$ |
$186624$ |
$1.131569$ |
$38112512/29791$ |
$0.88754$ |
$3.13843$ |
$[0, 0, 0, 3975, -57125]$ |
\(y^2=x^3+3975x-57125\) |
3.4.0.a.1, 60.8.0-3.a.1.2, 62.2.0.a.1, 186.8.0.?, 1860.16.0.? |
$[(674/7, 4257/7)]$ |
| 135036.q2 |
135036q2 |
135036.q |
135036q |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 11^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3^{6} \cdot 11^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2046$ |
$16$ |
$0$ |
$3.021410912$ |
$1$ |
|
$2$ |
$466560$ |
$1.525799$ |
$38112512/29791$ |
$0.88754$ |
$3.48825$ |
$[0, 0, 0, 19239, -608267]$ |
\(y^2=x^3+19239x-608267\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 62.2.0.a.1, 186.8.0.?, 2046.16.0.? |
$[(132, 2057)]$ |
| 138384.cy2 |
138384w2 |
138384.cy |
138384w |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 31^{2} \) |
\( - 2^{4} \cdot 3^{6} \cdot 31^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$372$ |
$16$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1658880$ |
$2.043846$ |
$38112512/29791$ |
$0.88754$ |
$4.00617$ |
$[0, 0, 0, 152799, 13614487]$ |
\(y^2=x^3+152799x+13614487\) |
3.4.0.a.1, 12.8.0-3.a.1.3, 62.2.0.a.1, 186.8.0.?, 372.16.0.? |
$[ ]$ |
| 143344.d2 |
143344b2 |
143344.d |
143344b |
$2$ |
$3$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6324$ |
$16$ |
$0$ |
$1.715412457$ |
$1$ |
|
$2$ |
$331776$ |
$1.194151$ |
$38112512/29791$ |
$0.88754$ |
$3.13551$ |
$[0, 1, 0, 5106, 84859]$ |
\(y^2=x^3+x^2+5106x+84859\) |
3.4.0.a.1, 62.2.0.a.1, 186.8.0.?, 204.8.0.?, 6324.16.0.? |
$[(895, 26877)]$ |
| 151900.b2 |
151900f2 |
151900.b |
151900f |
$2$ |
$3$ |
\( 2^{2} \cdot 5^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{4} \cdot 5^{6} \cdot 7^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6510$ |
$16$ |
$0$ |
$4.951252640$ |
$1$ |
|
$2$ |
$734832$ |
$1.555218$ |
$38112512/29791$ |
$0.88754$ |
$3.48343$ |
$[0, 1, 0, 21642, 732913]$ |
\(y^2=x^3+x^2+21642x+732913\) |
3.4.0.a.1, 62.2.0.a.1, 105.8.0.?, 186.8.0.?, 6510.16.0.? |
$[(102, 2003)]$ |
| 169756.d2 |
169756d2 |
169756.d |
169756d |
$2$ |
$3$ |
\( 2^{2} \cdot 31 \cdot 37^{2} \) |
\( - 2^{4} \cdot 31^{3} \cdot 37^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6882$ |
$16$ |
$0$ |
$6.127815108$ |
$1$ |
|
$6$ |
$870912$ |
$1.583004$ |
$38112512/29791$ |
$0.88754$ |
$3.47897$ |
$[0, 1, 0, 24186, -849287]$ |
\(y^2=x^3+x^2+24186x-849287\) |
3.4.0.a.1, 62.2.0.a.1, 111.8.0.?, 186.8.0.?, 6882.16.0.? |
$[(86, 1369), (186, 3181)]$ |
| 179056.a2 |
179056a2 |
179056.a |
179056a |
$2$ |
$3$ |
\( 2^{4} \cdot 19^{2} \cdot 31 \) |
\( - 2^{4} \cdot 19^{6} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7068$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$517104$ |
$1.249763$ |
$38112512/29791$ |
$0.88754$ |
$3.13302$ |
$[0, 1, 0, 6378, -113969]$ |
\(y^2=x^3+x^2+6378x-113969\) |
3.4.0.a.1, 62.2.0.a.1, 186.8.0.?, 228.8.0.?, 7068.16.0.? |
$[ ]$ |
| 188356.b2 |
188356b2 |
188356.b |
188356b |
$2$ |
$3$ |
\( 2^{2} \cdot 7^{2} \cdot 31^{2} \) |
\( - 2^{4} \cdot 7^{6} \cdot 31^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1302$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$6531840$ |
$2.467495$ |
$38112512/29791$ |
$0.88754$ |
$4.32304$ |
$[0, 1, 0, 831906, -172677107]$ |
\(y^2=x^3+x^2+831906x-172677107\) |
3.4.0.a.1, 42.8.0-3.a.1.1, 62.2.0.a.1, 186.8.0.?, 651.8.0.?, $\ldots$ |
$[ ]$ |
| 188604.c2 |
188604b2 |
188604.c |
188604b |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3^{6} \cdot 13^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2418$ |
$16$ |
$0$ |
$3.187844681$ |
$1$ |
|
$0$ |
$995328$ |
$1.609325$ |
$38112512/29791$ |
$0.88754$ |
$3.47482$ |
$[0, 0, 0, 26871, 1004029]$ |
\(y^2=x^3+26871x+1004029\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 62.2.0.a.1, 186.8.0.?, 2418.16.0.? |
$[(377/2, 16731/2)]$ |
| 208444.b2 |
208444b2 |
208444.b |
208444b |
$2$ |
$3$ |
\( 2^{2} \cdot 31 \cdot 41^{2} \) |
\( - 2^{4} \cdot 31^{3} \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7626$ |
$16$ |
$0$ |
$10.91108555$ |
$1$ |
|
$0$ |
$1211760$ |
$1.634331$ |
$38112512/29791$ |
$0.88754$ |
$3.47094$ |
$[0, -1, 0, 29698, -1176451]$ |
\(y^2=x^3-x^2+29698x-1176451\) |
3.4.0.a.1, 62.2.0.a.1, 123.8.0.?, 186.8.0.?, 7626.16.0.? |
$[(52711/5, 12138591/5)]$ |
| 218736.h2 |
218736d2 |
218736.h |
218736d |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3^{6} \cdot 7^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2604$ |
$16$ |
$0$ |
$1.186563631$ |
$1$ |
|
$2$ |
$653184$ |
$1.299807$ |
$38112512/29791$ |
$0.88754$ |
$3.13085$ |
$[0, 0, 0, 7791, 156751]$ |
\(y^2=x^3+7791x+156751\) |
3.4.0.a.1, 62.2.0.a.1, 84.8.0.?, 186.8.0.?, 2604.16.0.? |
$[(-10, 279)]$ |
| 229276.d2 |
229276d2 |
229276.d |
229276d |
$2$ |
$3$ |
\( 2^{2} \cdot 31 \cdot 43^{2} \) |
\( - 2^{4} \cdot 31^{3} \cdot 43^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7998$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1415232$ |
$1.658144$ |
$38112512/29791$ |
$0.88754$ |
$3.46731$ |
$[0, -1, 0, 32666, 1334841]$ |
\(y^2=x^3-x^2+32666x+1334841\) |
3.4.0.a.1, 62.2.0.a.1, 129.8.0.?, 186.8.0.?, 7998.16.0.? |
$[ ]$ |
| 240064.k2 |
240064k2 |
240064.k |
240064k |
$2$ |
$3$ |
\( 2^{6} \cdot 11^{2} \cdot 31 \) |
\( - 2^{10} \cdot 11^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$8184$ |
$16$ |
$0$ |
$8.960119987$ |
$1$ |
|
$0$ |
$622080$ |
$1.323067$ |
$38112512/29791$ |
$0.88754$ |
$3.12987$ |
$[0, 1, 0, 8551, -177377]$ |
\(y^2=x^3+x^2+8551x-177377\) |
3.4.0.a.1, 62.2.0.a.1, 186.8.0.?, 264.8.0.?, 8184.16.0.? |
$[(39701/26, 12805551/26)]$ |
| 240064.bl2 |
240064bl2 |
240064.bl |
240064bl |
$2$ |
$3$ |
\( 2^{6} \cdot 11^{2} \cdot 31 \) |
\( - 2^{10} \cdot 11^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$8184$ |
$16$ |
$0$ |
$6.393990086$ |
$1$ |
|
$0$ |
$622080$ |
$1.323067$ |
$38112512/29791$ |
$0.88754$ |
$3.12987$ |
$[0, -1, 0, 8551, 177377]$ |
\(y^2=x^3-x^2+8551x+177377\) |
3.4.0.a.1, 62.2.0.a.1, 186.8.0.?, 264.8.0.?, 8184.16.0.? |
$[(37009/20, 10589073/20)]$ |
| 262384.v2 |
262384v2 |
262384.v |
262384v |
$2$ |
$3$ |
\( 2^{4} \cdot 23^{2} \cdot 31 \) |
\( - 2^{4} \cdot 23^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$8556$ |
$16$ |
$0$ |
$17.65837845$ |
$1$ |
|
$0$ |
$855360$ |
$1.345291$ |
$38112512/29791$ |
$0.88754$ |
$3.12894$ |
$[0, -1, 0, 9346, -209053]$ |
\(y^2=x^3-x^2+9346x-209053\) |
3.4.0.a.1, 62.2.0.a.1, 186.8.0.?, 276.8.0.?, 8556.16.0.? |
$[(369046021/3045, 13374605596519/3045)]$ |
| 273916.f2 |
273916f2 |
273916.f |
273916f |
$2$ |
$3$ |
\( 2^{2} \cdot 31 \cdot 47^{2} \) |
\( - 2^{4} \cdot 31^{3} \cdot 47^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$8742$ |
$16$ |
$0$ |
$7.039824876$ |
$1$ |
|
$0$ |
$1907712$ |
$1.702618$ |
$38112512/29791$ |
$0.88754$ |
$3.46067$ |
$[0, 1, 0, 39026, 1770309]$ |
\(y^2=x^3+x^2+39026x+1770309\) |
3.4.0.a.1, 62.2.0.a.1, 141.8.0.?, 186.8.0.?, 8742.16.0.? |
$[(46305/8, 10358001/8)]$ |
| 322524.b2 |
322524b2 |
322524.b |
322524b |
$2$ |
$3$ |
\( 2^{2} \cdot 3^{2} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3^{6} \cdot 17^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$3162$ |
$16$ |
$0$ |
$1.258254300$ |
$1$ |
|
$4$ |
$1990656$ |
$1.743458$ |
$38112512/29791$ |
$0.88754$ |
$3.45473$ |
$[0, 0, 0, 45951, 2245241]$ |
\(y^2=x^3+45951x+2245241\) |
3.4.0.a.1, 51.8.0-3.a.1.2, 62.2.0.a.1, 186.8.0.?, 3162.16.0.? |
$[(85, 2601)]$ |
| 335296.h2 |
335296h2 |
335296.h |
335296h |
$2$ |
$3$ |
\( 2^{6} \cdot 13^{2} \cdot 31 \) |
\( - 2^{10} \cdot 13^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$9672$ |
$16$ |
$0$ |
$2.200242038$ |
$1$ |
|
$2$ |
$1327104$ |
$1.406593$ |
$38112512/29791$ |
$0.88754$ |
$3.12646$ |
$[0, 1, 0, 11943, 301471]$ |
\(y^2=x^3+x^2+11943x+301471\) |
3.4.0.a.1, 62.2.0.a.1, 186.8.0.?, 312.8.0.?, 9672.16.0.? |
$[(-22, 169)]$ |