Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-67498936x+214012584304\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-67498936xz^2+214012584304z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-5467413843x+155998771716114\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3900, 100352)$ | $1.4484003301331635063591607972$ | $\infty$ |
Integral points
\((3900,\pm 100352)\), \((4082,\pm 80514)\)
Invariants
Conductor: | $N$ | = | \( 97104 \) | = | $2^{4} \cdot 3 \cdot 7 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-99969216444086316171264$ | = | $-1 \cdot 2^{29} \cdot 3^{3} \cdot 7^{5} \cdot 17^{7} $ |
|
j-invariant: | $j$ | = | \( -\frac{344002044213921241}{1011143540736} \) | = | $-1 \cdot 2^{-17} \cdot 3^{-3} \cdot 7^{-5} \cdot 17^{-1} \cdot 700681^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2835895035821939274653018041$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1738356509941405779233023737$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.004016469849009$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.721367181601239$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.4484003301331635063591607972$ |
|
Real period: | $\Omega$ | ≈ | $0.10677547572254438081224992669$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 40 $ = $ 2^{2}\cdot1\cdot5\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.1861453714663546539395967931 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.186145371 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.106775 \cdot 1.448400 \cdot 40}{1^2} \\ & \approx 6.186145371\end{aligned}$$
Modular invariants
Modular form 97104.2.a.s
For more coefficients, see the Downloads section to the right.
Modular degree: | 14100480 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{21}^{*}$ | additive | -1 | 4 | 29 | 17 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$7$ | $5$ | $I_{5}$ | split multiplicative | -1 | 1 | 5 | 5 |
$17$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2856 = 2^{3} \cdot 3 \cdot 7 \cdot 17 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 2143 & 2 \\ 2143 & 3 \end{array}\right),\left(\begin{array}{rr} 2855 & 2 \\ 2854 & 3 \end{array}\right),\left(\begin{array}{rr} 1429 & 2 \\ 1429 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 2855 & 0 \end{array}\right),\left(\begin{array}{rr} 409 & 2 \\ 409 & 3 \end{array}\right),\left(\begin{array}{rr} 953 & 2 \\ 953 & 3 \end{array}\right),\left(\begin{array}{rr} 2689 & 2 \\ 2689 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[2856])$ is a degree-$5821761060864$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2856\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 6069 = 3 \cdot 7 \cdot 17^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 32368 = 2^{4} \cdot 7 \cdot 17^{2} \) |
$5$ | good | $2$ | \( 13872 = 2^{4} \cdot 3 \cdot 17^{2} \) |
$7$ | split multiplicative | $8$ | \( 13872 = 2^{4} \cdot 3 \cdot 17^{2} \) |
$17$ | additive | $162$ | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 97104.s consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 714.c1, its twist by $-68$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.2856.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.23295638016.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ord | split | ord | ord | add | ord | ord | ord | ord | ord | ss | ord | ord |
$\lambda$-invariant(s) | - | 1 | 5 | 4 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.