Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-128981x-17817299\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-128981xz^2-17817299z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2063691x-1142370810\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(415, -208)$ | $0$ | $2$ |
Integral points
\( \left(415, -208\right) \)
Invariants
| Conductor: | $N$ | = | \( 9702 \) | = | $2 \cdot 3^{2} \cdot 7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-311485620289536$ | = | $-1 \cdot 2^{22} \cdot 3^{9} \cdot 7^{3} \cdot 11 $ |
|
| j-invariant: | $j$ | = | \( -\frac{35148950502093}{46137344} \) | = | $-1 \cdot 2^{-22} \cdot 3^{3} \cdot 11^{-1} \cdot 61^{3} \cdot 179^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6878061572513934525553588272$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.37736940348648285773258671365$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0214664370585895$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.11085797835221$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.12595175161080779688887485225$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 88 $ = $ ( 2 \cdot 11 )\cdot2\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.7709385354377715315552467496 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.770938535 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.125952 \cdot 1.000000 \cdot 88}{2^2} \\ & \approx 2.770938535\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 59136 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $22$ | $I_{22}$ | split multiplicative | -1 | 1 | 22 | 22 |
| $3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
| $7$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
| $11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 233 & 1618 \\ 1616 & 231 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1845 & 4 \\ 1844 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1346 & 1 \\ 1175 & 0 \end{array}\right),\left(\begin{array}{rr} 620 & 1 \\ 1231 & 0 \end{array}\right),\left(\begin{array}{rr} 925 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 796 & 1 \\ 263 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[1848])$ is a degree-$163499212800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1848\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 231 = 3 \cdot 7 \cdot 11 \) |
| $3$ | additive | $2$ | \( 1078 = 2 \cdot 7^{2} \cdot 11 \) |
| $7$ | additive | $20$ | \( 198 = 2 \cdot 3^{2} \cdot 11 \) |
| $11$ | split multiplicative | $12$ | \( 441 = 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 9702bl
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 9702e1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-231}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.6519744.4 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.5143354480889856.38 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 |
|---|---|---|---|---|---|
| Reduction type | split | add | ord | add | split |
| $\lambda$-invariant(s) | 5 | - | 0 | - | 3 |
| $\mu$-invariant(s) | 0 | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 13$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.