Learn more

Refine search


Results (1-50 of 118 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
9702.a1 9702.a \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $4.890165786$ $[1, -1, 0, -4438674, -3598272896]$ \(y^2+xy=x^3-x^2-4438674x-3598272896\)
9702.a2 9702.a \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $9.780331572$ $[1, -1, 0, -4434264, -3605783126]$ \(y^2+xy=x^3-x^2-4434264x-3605783126\)
9702.a3 9702.a \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.978033157$ $[1, -1, 0, -19854, 789844]$ \(y^2+xy=x^3-x^2-19854x+789844\)
9702.a4 9702.a \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.956066314$ $[1, -1, 0, 50706, 5094004]$ \(y^2+xy=x^3-x^2+50706x+5094004\)
9702.b1 9702.b \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -3283254, 2290077684]$ \(y^2+xy=x^3-x^2-3283254x+2290077684\)
9702.b2 9702.b \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -178614, 45422964]$ \(y^2+xy=x^3-x^2-178614x+45422964\)
9702.c1 9702.c \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2969556, -1968891184]$ \(y^2+xy=x^3-x^2-2969556x-1968891184\)
9702.c2 9702.c \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -34701, -2994867]$ \(y^2+xy=x^3-x^2-34701x-2994867\)
9702.d1 9702.d \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -11239188, -14499945776]$ \(y^2+xy=x^3-x^2-11239188x-14499945776\)
9702.d2 9702.d \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -702228, -226579760]$ \(y^2+xy=x^3-x^2-702228x-226579760\)
9702.e1 9702.e \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.235769554$ $[1, -1, 0, -513, -1625]$ \(y^2+xy=x^3-x^2-513x-1625\)
9702.e2 9702.e \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.617884777$ $[1, -1, 0, 117, -239]$ \(y^2+xy=x^3-x^2+117x-239\)
9702.f1 9702.f \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -11964633, 15936473069]$ \(y^2+xy=x^3-x^2-11964633x+15936473069\)
9702.g1 9702.g \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $7.001493170$ $[1, -1, 0, -23134428, 42834024400]$ \(y^2+xy=x^3-x^2-23134428x+42834024400\)
9702.g2 9702.g \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $3.500746585$ $[1, -1, 0, -1401948, 712131664]$ \(y^2+xy=x^3-x^2-1401948x+712131664\)
9702.h1 9702.h \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -11328, 177344]$ \(y^2+xy=x^3-x^2-11328x+177344\)
9702.h2 9702.h \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 41592, 1331000]$ \(y^2+xy=x^3-x^2+41592x+1331000\)
9702.i1 9702.i \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $3.735481939$ $[1, -1, 0, -2508, -37864]$ \(y^2+xy=x^3-x^2-2508x-37864\)
9702.j1 9702.j \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $0.685868154$ $[1, -1, 0, 12, -316]$ \(y^2+xy=x^3-x^2+12x-316\)
9702.k1 9702.k \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $3.271184125$ $[1, -1, 0, -660, -6448]$ \(y^2+xy=x^3-x^2-660x-6448\)
9702.l1 9702.l \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -51102, -4433612]$ \(y^2+xy=x^3-x^2-51102x-4433612\)
9702.l2 9702.l \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -702, -4460]$ \(y^2+xy=x^3-x^2-702x-4460\)
9702.m1 9702.m \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.318501249$ $[1, -1, 0, -451887, 117033965]$ \(y^2+xy=x^3-x^2-451887x+117033965\)
9702.m2 9702.m \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $2.637002499$ $[1, -1, 0, -28527, 1795373]$ \(y^2+xy=x^3-x^2-28527x+1795373\)
9702.m3 9702.m \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.439500416$ $[1, -1, 0, -7212, 60724]$ \(y^2+xy=x^3-x^2-7212x+60724\)
9702.m4 9702.m \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $0.879000833$ $[1, -1, 0, -4272, -105680]$ \(y^2+xy=x^3-x^2-4272x-105680\)
9702.n1 9702.n \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -6232662, -5987079050]$ \(y^2+xy=x^3-x^2-6232662x-5987079050\)
9702.n2 9702.n \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -362952, -106803572]$ \(y^2+xy=x^3-x^2-362952x-106803572\)
9702.n3 9702.n \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -160092, 12405784]$ \(y^2+xy=x^3-x^2-160092x+12405784\)
9702.n4 9702.n \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 33948, 1423120]$ \(y^2+xy=x^3-x^2+33948x+1423120\)
9702.o1 9702.o \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/3\Z$ $7.670700770$ $[1, -1, 0, -2504007, 1525736925]$ \(y^2+xy=x^3-x^2-2504007x+1525736925\)
9702.o2 9702.o \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $2.556900256$ $[1, -1, 0, -34407, 1598589]$ \(y^2+xy=x^3-x^2-34407x+1598589\)
9702.p1 9702.p \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -32349, 2276357]$ \(y^2+xy=x^3-x^2-32349x+2276357\)
9702.q1 9702.q \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $10.12538341$ $[1, -1, 0, -472131, -124745643]$ \(y^2+xy=x^3-x^2-472131x-124745643\)
9702.q2 9702.q \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $5.062691707$ $[1, -1, 0, -28611, -2068011]$ \(y^2+xy=x^3-x^2-28611x-2068011\)
9702.r1 9702.r \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $6.276208731$ $[1, -1, 0, -17748936, 28785485182]$ \(y^2+xy=x^3-x^2-17748936x+28785485182\)
9702.r2 9702.r \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $6.276208731$ $[1, -1, 0, -1546596, 63354514]$ \(y^2+xy=x^3-x^2-1546596x+63354514\)
9702.r3 9702.r \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.138104365$ $[1, -1, 0, -1110006, 449387392]$ \(y^2+xy=x^3-x^2-1110006x+449387392\)
9702.r4 9702.r \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $1.569052182$ $[1, -1, 0, -42786, 12467524]$ \(y^2+xy=x^3-x^2-42786x+12467524\)
9702.s1 9702.s \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $8.770756740$ $[1, -1, 0, -244176, -46392256]$ \(y^2+xy=x^3-x^2-244176x-46392256\)
9702.t1 9702.t \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $4.262240184$ $[1, -1, 0, -25146, 607662]$ \(y^2+xy=x^3-x^2-25146x+607662\)
9702.t2 9702.t \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $1$ $\Z/2\Z$ $2.131120092$ $[1, -1, 0, 5724, 70524]$ \(y^2+xy=x^3-x^2+5724x+70524\)
9702.u1 9702.u \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -229371, 42339429]$ \(y^2+xy=x^3-x^2-229371x+42339429\)
9702.u2 9702.u \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -14331, 664677]$ \(y^2+xy=x^3-x^2-14331x+664677\)
9702.v1 9702.v \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2277186, -1322083540]$ \(y^2+xy=x^3-x^2-2277186x-1322083540\)
9702.v2 9702.v \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -266226, 20369852]$ \(y^2+xy=x^3-x^2-266226x+20369852\)
9702.v3 9702.v \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -142746, -20502028]$ \(y^2+xy=x^3-x^2-142746x-20502028\)
9702.v4 9702.v \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1626, -829900]$ \(y^2+xy=x^3-x^2-1626x-829900\)
9702.w1 9702.w \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 579, 107225]$ \(y^2+xy=x^3-x^2+579x+107225\)
9702.x1 9702.x \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -155241, -23504013]$ \(y^2+xy=x^3-x^2-155241x-23504013\)
Next   Download to