Properties

Label 9680b
Number of curves $1$
Conductor $9680$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 9680b1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9680b do not have complex multiplication.

Modular form 9680.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 3 q^{7} - 2 q^{9} - 4 q^{13} + q^{15} + 3 q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 9680b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9680.e1 9680b1 \([0, -1, 0, 27064, 29493136]\) \(453962/78125\) \(-377271630560000000\) \([]\) \(88704\) \(2.0519\) \(\Gamma_0(N)\)-optimal