Properties

Label 96432cy
Number of curves $2$
Conductor $96432$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 96432cy have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(41\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 96432cy do not have complex multiplication.

Modular form 96432.2.a.cy

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + q^{9} - 4 q^{11} - 4 q^{13} + 2 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 96432cy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
96432.ct1 96432cy1 \([0, 1, 0, -355854872, -2583910179180]\) \(10341755683137709164937/356992303104\) \(172031129468446703616\) \([2]\) \(14515200\) \(3.3805\) \(\Gamma_0(N)\)-optimal
96432.ct2 96432cy2 \([0, 1, 0, -355353112, -2591559610732]\) \(-10298071306410575356297/60769798505543808\) \(-29284376675855251322437632\) \([2]\) \(29030400\) \(3.7271\)