Properties

Label 95760bv
Number of curves $2$
Conductor $95760$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bv1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 95760bv have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 95760bv do not have complex multiplication.

Modular form 95760.2.a.bv

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 3 q^{11} - q^{13} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 95760bv

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
95760.j1 95760bv1 \([0, 0, 0, -11763, -580942]\) \(-1627624771947/376421920\) \(-41629252976640\) \([]\) \(207360\) \(1.3329\) \(\Gamma_0(N)\)-optimal
95760.j2 95760bv2 \([0, 0, 0, 83997, 3724002]\) \(812949929037/544768000\) \(-43920050356224000\) \([]\) \(622080\) \(1.8822\)