Show commands: SageMath
Rank
The elliptic curves in class 9537c have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 9537c do not have complex multiplication.Modular form 9537.2.a.c
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 9537c
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 9537.b3 | 9537c1 | \([1, 1, 1, -3474, 77166]\) | \(192100033/561\) | \(13541176209\) | \([4]\) | \(9216\) | \(0.81452\) | \(\Gamma_0(N)\)-optimal |
| 9537.b2 | 9537c2 | \([1, 1, 1, -4919, 4916]\) | \(545338513/314721\) | \(7596599853249\) | \([2, 2]\) | \(18432\) | \(1.1611\) | |
| 9537.b1 | 9537c3 | \([1, 1, 1, -52604, -4649140]\) | \(666940371553/2756193\) | \(66527798714817\) | \([2]\) | \(36864\) | \(1.5077\) | |
| 9537.b4 | 9537c4 | \([1, 1, 1, 19646, 63872]\) | \(34741712447/20160657\) | \(-486629249422833\) | \([2]\) | \(36864\) | \(1.5077\) |