Properties

Label 9438.r
Number of curves $1$
Conductor $9438$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 9438.r1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9438.r do not have complex multiplication.

Modular form 9438.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - 3 q^{5} - q^{6} - 3 q^{7} + q^{8} + q^{9} - 3 q^{10} - q^{12} - q^{13} - 3 q^{14} + 3 q^{15} + q^{16} - 2 q^{17} + q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 9438.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9438.r1 9438s1 \([1, 1, 1, -25682, -1595923]\) \(-1407450852604763/1119214746\) \(-1489674826926\) \([]\) \(32256\) \(1.2662\) \(\Gamma_0(N)\)-optimal