Show commands: SageMath
Rank
The elliptic curves in class 9360z have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 9360z do not have complex multiplication.Modular form 9360.2.a.z
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 9360z
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
9360.q2 | 9360z1 | \([0, 0, 0, 12, 63]\) | \(442368/4225\) | \(-1825200\) | \([2]\) | \(1536\) | \(-0.11738\) | \(\Gamma_0(N)\)-optimal |
9360.q1 | 9360z2 | \([0, 0, 0, -183, 882]\) | \(98055792/8125\) | \(56160000\) | \([2]\) | \(3072\) | \(0.22919\) |