Show commands: SageMath
Rank
The elliptic curves in class 9310p have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 9310p do not have complex multiplication.Modular form 9310.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 9310p
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 9310.s1 | 9310p1 | \([1, 1, 1, -80116, -9168587]\) | \(-483385461758641/26693632000\) | \(-3140479111168000\) | \([]\) | \(103680\) | \(1.7314\) | \(\Gamma_0(N)\)-optimal |
| 9310.s2 | 9310p2 | \([1, 1, 1, 429484, -17823947]\) | \(74469146542554959/44285662466080\) | \(-5210163903471845920\) | \([]\) | \(311040\) | \(2.2808\) |