Properties

Label 9310.s
Number of curves $2$
Conductor $9310$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 9310.s have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 7 T + 13 T^{2}\) 1.13.ah
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9310.s do not have complex multiplication.

Modular form 9310.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + 2 q^{3} + q^{4} - q^{5} + 2 q^{6} + q^{8} + q^{9} - q^{10} - 3 q^{11} + 2 q^{12} + 7 q^{13} - 2 q^{15} + q^{16} - 3 q^{17} + q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 9310.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9310.s1 9310p1 \([1, 1, 1, -80116, -9168587]\) \(-483385461758641/26693632000\) \(-3140479111168000\) \([]\) \(103680\) \(1.7314\) \(\Gamma_0(N)\)-optimal
9310.s2 9310p2 \([1, 1, 1, 429484, -17823947]\) \(74469146542554959/44285662466080\) \(-5210163903471845920\) \([]\) \(311040\) \(2.2808\)