Properties

Label 92697e
Number of curves $4$
Conductor $92697$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 92697e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(53\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 92697e do not have complex multiplication.

Modular form 92697.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + 2 q^{5} - q^{6} + 4 q^{7} + 3 q^{8} + q^{9} - 2 q^{10} + q^{11} - q^{12} - 2 q^{13} - 4 q^{14} + 2 q^{15} - q^{16} - 2 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 92697e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
92697.c3 92697e1 \([1, 0, 0, -18317, -947688]\) \(30664297/297\) \(6582815255313\) \([2]\) \(224640\) \(1.2794\) \(\Gamma_0(N)\)-optimal
92697.c2 92697e2 \([1, 0, 0, -32362, 701195]\) \(169112377/88209\) \(1955096130827961\) \([2, 2]\) \(449280\) \(1.6259\)  
92697.c4 92697e3 \([1, 0, 0, 122133, 5490540]\) \(9090072503/5845851\) \(-129569552670325779\) \([2]\) \(898560\) \(1.9725\)  
92697.c1 92697e4 \([1, 0, 0, -411577, 101496542]\) \(347873904937/395307\) \(8761727104821603\) \([2]\) \(898560\) \(1.9725\)