Properties

Label 9152e
Number of curves $1$
Conductor $9152$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 9152e1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 9152e do not have complex multiplication.

Modular form 9152.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 2 q^{7} - 2 q^{9} - q^{11} + q^{13} - q^{15} + 4 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 9152e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
9152.l1 9152e1 \([0, -1, 0, -11525, 596893]\) \(-10333900063744/3293331899\) \(-53957949833216\) \([]\) \(17920\) \(1.3479\) \(\Gamma_0(N)\)-optimal