Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 91358.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
91358.d1 | 91358e2 | \([1, -1, 1, -2069779263, -36234533783817]\) | \(980608845198487572940262772638529/275069582998987905611470576\) | \(275069582998987905611470576\) | \([]\) | \(130658304\) | \(4.0546\) | |
91358.d2 | 91358e1 | \([1, -1, 1, -62268303, 189138631383]\) | \(26700832091472147512881229889/295971568928797229056\) | \(295971568928797229056\) | \([7]\) | \(18665472\) | \(3.0817\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 91358.d have rank \(1\).
Complex multiplication
The elliptic curves in class 91358.d do not have complex multiplication.Modular form 91358.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.