Properties

Label 90944eb
Number of curves $2$
Conductor $90944$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 90944eb have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(29\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 23 T^{2}\) 1.23.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 90944eb do not have complex multiplication.

Modular form 90944.2.a.eb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} - 2 q^{9} + 3 q^{11} + 5 q^{13} - 3 q^{15} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 90944eb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
90944.by1 90944eb1 \([0, -1, 0, -849, 15121]\) \(-35152/29\) \(-55899275264\) \([]\) \(73728\) \(0.76021\) \(\Gamma_0(N)\)-optimal
90944.by2 90944eb2 \([0, -1, 0, 6991, -243599]\) \(19600688/24389\) \(-47011290497024\) \([]\) \(221184\) \(1.3095\)