Properties

Label 90354b
Number of curves $4$
Conductor $90354$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 90354b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 90354b do not have complex multiplication.

Modular form 90354.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + 2 q^{5} + q^{6} - 2 q^{7} - q^{8} + q^{9} - 2 q^{10} - q^{11} - q^{12} + 6 q^{13} + 2 q^{14} - 2 q^{15} + q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 90354b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
90354.e3 90354b1 \([1, 1, 0, -11979, -510867]\) \(-3753503985421/10392624\) \(-526417583472\) \([2]\) \(230400\) \(1.1221\) \(\Gamma_0(N)\)-optimal
90354.e2 90354b2 \([1, 1, 0, -191799, -32410935]\) \(15404978391891661/117612\) \(5957400636\) \([2]\) \(460800\) \(1.4686\)  
90354.e4 90354b3 \([1, 1, 0, 86256, 9153792]\) \(1401130594505699/1519867920384\) \(-76985869771210752\) \([2]\) \(1152000\) \(1.9268\)  
90354.e1 90354b4 \([1, 1, 0, -482064, 84967680]\) \(244587381607181341/79679768374272\) \(4036019307461999616\) \([2]\) \(2304000\) \(2.2734\)