Properties

Label 89930.d
Number of curves $2$
Conductor $89930$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 89930.d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1 + T\)
\(17\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 89930.d do not have complex multiplication.

Modular form 89930.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} - q^{5} + 2 q^{6} + 2 q^{7} - q^{8} + q^{9} + q^{10} + 2 q^{11} - 2 q^{12} - 6 q^{13} - 2 q^{14} + 2 q^{15} + q^{16} - q^{17} - q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 89930.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
89930.d1 89930d1 \([1, 0, 1, -3979, -83994]\) \(47045881/6800\) \(1006644045200\) \([2]\) \(201344\) \(1.0285\) \(\Gamma_0(N)\)-optimal
89930.d2 89930d2 \([1, 0, 1, 6601, -452178]\) \(214921799/722500\) \(-106955929802500\) \([2]\) \(402688\) \(1.3750\)